Andrey A Vigasin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4635122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trajectory-based Simulation of Far-infrared Collision-induced Absorption Profiles of CH ₄ –N ₂ for Modeling Titan's Atmosphere. Astrophysical Journal, Supplement Series, 2022, 258, 33.	7.7	4
2	Herman-Wallis factor for a molecule of type HCN. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 288, 108274.	2.3	4
3	Simulation of collision-induced absorption spectra based on classical trajectories and <i>ab initio</i> potential and induced dipole surfaces. II. CO2–Ar rototranslational band including true dimer contribution. Journal of Chemical Physics, 2021, 155, 064301.	3.0	6
4	Theory of rovibrational line intensities in allowed and collision-induced absorption spectra of linear molecules. Physical Review A, 2021, 104, .	2.5	3
5	Breakdown of conventional rovibrational selection rules for field- or collision-induced absorption in symmetric linear molecules. Physical Review A, 2020, 102, .	2.5	5
6	Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25µm bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 228, 97-105.	2.3	18
7	Update of the HITRAN collision-induced absorption section. Icarus, 2019, 328, 160-175.	2.5	105
8	Simulation of collision-induced absorption spectra based on classical trajectories and <i>ab initio</i> potential and induced dipole surfaces. I. Case study of N2–N2 rototranslational band. Journal of Chemical Physics, 2019, 151, 194106.	3.0	16
9	Comprehensive classical analysis of partition function and some observables for weakly interacting polyatomic dimers. Journal of Chemical Physics, 2018, 149, 194304.	3.0	3
10	Systematization of published research plots in spectroscopy of weakly bounded complexes of molecular oxygen and nitrogen. , 2018, , .		1
11	Transient reducing greenhouse warming on early Mars. Geophysical Research Letters, 2017, 44, 665-671.	4.0	178
12	Nuclear Spin Symmetry Conservation in ¹ H ₂ ¹⁶ O Investigated by Direct Absorption FTIR Spectroscopy of Water Vapor Cooled Down in Supersonic Expansion. Journal of Physical Chemistry A, 2017, 121, 7455-7468.	2.5	18
13	Greenhouse effect in planetary atmospheres caused by molecular symmetry breaking in intermolecular intermolecular interactions. Izvestiya - Atmospheric and Oceanic Physics, 2017, 53, 164-173.	0.9	4
14	Systematization of published research graphics characterizing weakly bound molecular complexes with carbon dioxide. , 2017, , .		3
15	<i>Ab initio</i> 3D potential energy and dipole moment surfaces for the CH4–Ar complex: Collision-induced intensity and dimer content. Journal of Chemical Physics, 2016, 144, 054304.	3.0	10
16	Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface. Journal of Chemical Physics, 2015, 143, 234304.	3.0	18
17	Explicit correlation treatment of the potential energy surface of CO2 dimer. Journal of Chemical Physics, 2014, 140, 234310.	3.0	53
18	Far-infrared collision-induced absorption in rare gas mixtures: Quantum and semi-classical calculations. Journal of Chemical Physics, 2014, 140, .	3.0	8

ANDREY A VIGASIN

#	Article	IF	CITATIONS
19	Water vapor continuum: Whether collision-induced absorption is involved?. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 148, 58-64.	2.3	18
20	Ab initio and multipolar characterisation of the induced dipole surface for CH4–CH4: Application to dipole-forbidden absorption in the Titan's atmosphere. Journal of Molecular Spectroscopy, 2013, 291, 102-107.	1.2	8
21	On the concept of excluded volume for weakly associating gas. Molecular Physics, 2012, 110, 2957-2961.	1.7	2
22	CCSD(T) potential energy and induced dipole surfaces for N2–H2(D2): Retrieval of the collision-induced absorption integrated intensities in the regions of the fundamental and first overtone vibrational transitions. Journal of Chemical Physics, 2012, 137, 114308.	3.0	4
23	H ₂ Oâ ^{~i} N ₂ collision-induced absorption band intensity in the region of the N ₂ fundamental: <i>ab initio</i> investigation of its temperature dependence and comparison with laboratory data. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences. 2012. 370. 2691-2709.	3.4	28
24	Water vapour self-continuum and water dimers: 1. Analysis of recent work. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1286-1303.	2.3	93
25	On the possibility to quantify contributions from true bound and metastable pairs to infrared absorption in pressurised water vapour. Molecular Physics, 2010, 108, 2309-2313.	1.7	27
26	Direct absorption spectroscopy of water clusters formed in a continuous slit nozzle expansion. Journal of Chemical Physics, 2009, 131, 204312.	3.0	52
27	On the water dimer contribution to the OH stretching absorption band profile in pressurized water vapour. Molecular Physics, 2008, 106, 1155-1159.	1.7	16
28	Extensive <i>ab initio</i> study of the integrated IR intensity in the N ₂ fundamental collision-induced band. Molecular Physics, 2008, 106, 1227-1231.	1.7	7
29	Direct FTIR high resolution probe of small and medium size Arn(CO2)m van der Waals complexes formed in a slit supersonic expansion. Journal of Molecular Spectroscopy, 2006, 240, 141-152.	1.2	20
30	The effect of perturbing gas density on the intensity distribution in rovibrational absorption bands. Chemical Physics, 2006, 325, 404-410.	1.9	1
31	<title>Partially deuterated water dimer: are there perspectives for its spectroscopic detection in the atmosphere?</title> . , 2006, 6580, 246.		О
32	<title>Ab initio simulation of collision-induced intensity in the N<formula><inf><roman>2</roman></inf></formula> fundamental</title> . , 2006, 6580, 90.		0
33	Statistical physics partitioning and classical trajectory analysis of the phase space in CO2–Ar weakly interacting pairs. Journal of Molecular Structure, 2005, 742, 31-36.	3.6	21
34	Density evolution of absorption bandshapes in the water vapor OH-stretching fundamental and overtone: evidence for molecular aggregation. Journal of Molecular Structure, 2005, 742, 173-181.	3.6	14
35	Four-photon coherent spectroscopy of orientational motion of H2O molecules in liquid water. Journal of Raman Spectroscopy, 2005, 36, 145-147.	2.5	29
36	On the temperature variations of the integrated absorption intensity in the oxygen fundamental. Journal of Molecular Spectroscopy, 2004, 224, 185-187.	1.2	15

ANDREY A VIGASIN

#	Article	IF	CITATIONS
37	On the origin of the band structure observed in the collision-induced absorption bands of CO2. Journal of Molecular Spectroscopy, 2003, 218, 260-261.	1.2	12
38	Systematic trends in the vibrational frequency shifts of some molecules trapped in amorphous water ice. Journal of Molecular Structure, 2003, 658, 101-113.	3.6	7
39	Temperature Variations of the Interaction Induced Absorption of CO2 in the ν1, 2ν2 Region: FTIR Measurements and Dimer Contribution. Journal of Molecular Spectroscopy, 2002, 213, 51-56.	1.2	24
40	Spin-selective adsorption of water vapor. Doklady Physics, 2002, 47, 842-845.	0.7	7
41	Thermally Averaged Spectroscopic Parameters of the Weakly Bound Dimers. Journal of Molecular Spectroscopy, 2001, 205, 9-15.	1.2	5
42	Identification of the (CO2)2 Dimer Vibrations in the ν1, 2ν2 Region: Anharmonic Variational Calculations. Journal of Molecular Spectroscopy, 2001, 209, 81-87.	1.2	14
43	Intensity and Bandshapes of Collision-Induced Absorption by CO2 in the Region of the Fermi Doublet. Journal of Molecular Spectroscopy, 2000, 200, 89-95.	1.2	22
44	Collision-Induced Absorption in the Region of the O2 Fundamental: Bandshapes and Dimeric Features. Journal of Molecular Spectroscopy, 2000, 202, 59-66.	1.2	18
45	Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 64, 25-40.	2.3	50
46	Matrix isolation spectra of the carbon dioxide monomer and dimer revisited. Vibrational Spectroscopy, 2000, 23, 83-94.	2.2	58
47	ON THE MODELLING OF ABSORPTION IN THE ν3 BAND FAR WING OF CO2 PERTURBED BY ARGON. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 61, 743-749.	2.3	2
48	Mass-action law for highly excited dimers. Chemical Physics Letters, 1998, 290, 495-501.	2.6	8
49	Subdivision of phase space for anisotropically interacting water molecules. Molecular Physics, 1997, 90, 101-106.	1.7	21
50	High-resolution CARS spectroscopy of small carbon dioxide clusters: investigation of the CO2 dimer in the Fermi dyad. Journal of Molecular Structure, 1997, 410-411, 47-50.	3.6	6
51	Vibrational frequency shifts caused by weak intermolecular interactions. Chemical Physics Letters, 1997, 269, 235-243.	2.6	46
52	On the nature of collision-induced absorption in gaseous homonuclear diatomics. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 56, 409-422.	2.3	23
53	Thermally averaged effective dissociation energy of dimers. Chemical Physics Letters, 1995, 242, 33-38.	2.6	11
54	Vibrational frequency shifts and thermodynamic stabilities of (HF)n isomers (n=4–8). Chemical Physics Letters, 1995, 245, 319-325.	2.6	32

ANDREY A VIGASIN

#	Article	IF	CITATIONS
55	Contribution of bound, metastable and free states of bimolecular complexes to collision-induced intensity of absorption. Chemical Physics Letters, 1994, 225, 537-541.	2.6	23
56	Simultaneous infrared absorption in a mixture of CO2 and H2O: The role of hydrogen-bonded aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52, 295-301.	2.3	6
57	The nature of the absorption bandshape density evolution for the first overtone of CO compressed by N2. Infrared Physics, 1993, 34, 289-298.	0.5	6
58	IR-spectra of (CO2)2 dimers and collision-induced absorption of carbon dioxide in the region of the fermi doublet (ν1, 2ν2). Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, 50, 695-703.	2.3	9
59	Bound, metastable and free states of bimolecular complexes. Infrared Physics, 1991, 32, 461-470.	0.5	63
60	Application of spontaneous Raman spectroscopy to the study of molecular association in a freely expanding gas jet. Journal of Applied Spectroscopy, 1991, 55, 777-780.	0.7	1
61	On the influence of van der waals association on IR absorption band shapes of highly compressed carbon dioxide. Infrared Physics, 1989, 29, 575-582.	0.5	11
62	Spatial distribution of CO2 dimers in axisymmetric gas jets expanding in a vacuum. Journal of Applied Mechanics and Technical Physics, 1989, 30, 52-57.	0.5	4
63	Structure and molecular spectroscopy of gas-phase complexes. Journal of Structural Chemistry, 1988, 28, 735-764.	1.0	3
64	On the spectroscopic manifestations of weakly bound complexes in rarefied gases. Chemical Physics Letters, 1985, 117, 85-88.	2.6	33
65	Structure and properties of associates of water. Journal of Structural Chemistry, 1983, 24, 102-131.	1.0	2
66	Kinetics of dimer formation in rarefied water vapor streams. Journal of Applied Mechanics and Technical Physics, 1981, 22, 66-71.	0.5	2
67	Diffraction of light by absorbing inclusions in solids. Soviet Journal of Quantum Electronics, 1977, 7, 370-372.	0.1	1
68	Thermal stresses in laser materials containing inclusions. Soviet Journal of Quantum Electronics, 1976, 6, 522-524.	0.1	0