
Carrie L Partch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4634786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular architecture of the mammalian circadian clock. Trends in Cell Biology, 2014, 24, 90-99.	7.9	1,084
2	Analysis of Protein Stability and Ligand Interactions by Thermal Shift Assay. Current Protocols in Protein Science, 2015, 79, 28.9.1-28.9.14.	2.8	368
3	Crystal Structure of the Heterodimeric CLOCK:BMAL1 Transcriptional Activator Complex. Science, 2012, 337, 189-194.	12.6	270
4	Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature, 2014, 505, 103-107.	27.8	256
5	Role of Structural Plasticity in Signal Transduction by the Cryptochrome Blue-Light Photoreceptorâ€. Biochemistry, 2005, 44, 3795-3805.	2.5	171
6	Structural basis of the day-night transition in a bacterial circadian clock. Science, 2017, 355, 1174-1180.	12.6	144
7	Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus. Nature Structural and Molecular Biology, 2015, 22, 476-484.	8.2	137
8	Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7722-7727.	7.1	121
9	CK1Î′Ĵµ protein kinase primes the PER2 circadian phosphoswitch. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5986-5991.	7.1	120
10	Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17701-17706.	7.1	113
11	Photochemistry and Photobiology of Cryptochrome Blue-light Photopigments: The Search for a Photocycle. Photochemistry and Photobiology, 2005, 81, 1291.	2.5	111
12	Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1560-1565.	7.1	92
13	Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10467-10472.	7.1	85
14	Regulation of C-type Lectin Antimicrobial Activity by a Flexible N-terminal Prosegment. Journal of Biological Chemistry, 2009, 284, 4881-4888.	3.4	84
15	Emerging Models for the Molecular Basis of Mammalian Circadian Timing. Biochemistry, 2015, 54, 134-149.	2.5	80
16	Animal Cryptochromes: Divergent Roles in Light Perception, Circadian Timekeeping and Beyond. Photochemistry and Photobiology, 2017, 93, 128-140.	2.5	77
17	A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms. Molecular Cell, 2017, 66, 447-457.e7.	9.7	66
18	Structure, function, and mechanism of the core circadian clock in cyanobacteria. Journal of Biological Chemistry, 2018, 293, 5026-5034.	3.4	62

CARRIE L PARTCH

#	Article	IF	CITATIONS
19	Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7739-7744.	7.1	58
20	Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. ELife, 2017, 6, .	6.0	57
21	Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation. Cell Reports, 2021, 36, 109487.	6.4	56
22	Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. ELife, 2020, 9, .	6.0	52
23	Cancer/Testis Antigen PASD1 Silences the Circadian Clock. Molecular Cell, 2015, 58, 743-754.	9.7	51
24	Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. ELife, 2020, 9, .	6.0	50
25	Coactivator recruitment: A new role for PAS domains in transcriptional regulation by the bHLHâ€₽AS family. Journal of Cellular Physiology, 2010, 223, 553-557.	4.1	47
26	Orchestration of Circadian Timing by Macromolecular Protein Assemblies. Journal of Molecular Biology, 2020, 432, 3426-3448.	4.2	46
27	The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27971-27979.	7.1	40
28	NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genetics, 2021, 17, e1009933.	3.5	39
29	Cryptochromes and Circadian Photoreception in Animals. Methods in Enzymology, 2005, 393, 726-745.	1.0	38
30	Regulating the ARNT/TACC3 Axis: Multiple Approaches to Manipulating Protein/Protein Interactions with Small Molecules. ACS Chemical Biology, 2013, 8, 626-635.	3.4	37
31	Molecular Basis of Coiled Coil Coactivator Recruitment by the Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT). Journal of Biological Chemistry, 2009, 284, 15184-15192.	3.4	32
32	New insights into non-transcriptional regulation of mammalian core clock proteins. Journal of Cell Science, 2020, 133, .	2.0	32
33	Reconstitution of an intact clock reveals mechanisms of circadian timekeeping. Science, 2021, 374, eabd4453.	12.6	32
34	Coiled-coil Coactivators Play a Structural Role Mediating Interactions in Hypoxia-inducible Factor Heterodimerization. Journal of Biological Chemistry, 2015, 290, 7707-7721.	3.4	26
35	Further evidence for the role of cryptochromes in retinohypothalamic photoreception/phototransduction. Molecular Brain Research, 2004, 122, 158-166.	2.3	23
36	The tail of cryptochromes: an intrinsically disordered cog within the mammalian circadian clock. Cell Communication and Signaling, 2020, 18, 182.	6.5	23

CARRIE L PARTCH

#	Article	IF	CITATIONS
37	Assembly and function of bHLH–PAS complexes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5330-5332.	7.1	22
38	Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	20
39	Early doors (<i>Edo</i>) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2756-2761.	7.1	19
40	Quantification of protein abundance and interaction defines a mechanism for operation of the circadian clock. ELife, 2022, 11, .	6.0	18
41	<i>CRY2</i> missense mutations suppress P53 and enhance cell growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
42	Biochemical mechanisms of period control within the mammalian circadian clock. Seminars in Cell and Developmental Biology, 2022, 126, 71-78.	5.0	10
43	Cytosolic BMAL1 moonlights as a translation factor. Trends in Biochemical Sciences, 2015, 40, 489-490.	7.5	9
44	The Three Rs of Transcription: Recruit, Retain, and Recycle. Molecular Cell, 2010, 40, 855-858.	9.7	4
45	An imPERfect link to cancer?. Cell Cycle, 2014, 13, 507-507.	2.6	1
46	Regulating behavior with the flip of a translational switch. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13151-13153.	7.1	0
47	A C2-symmetric state in the AAA+ KaiC hexamer coordinates structural and functional modes within a molecular clock. Biophysical Journal, 2022, 121, 42a-43a.	0.5	Ο