MarÃ-a Lourdes Franco GarcÃ-a

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/463447/publications.pdf
Version: 2024-02-01

| Chain-folded lamellar crystals of aliphatic polyamides. Investigation of nylons 4 8, $410,412,610,612$, | 1.8 |
| :--- | :--- | :--- |
| 618 and 812 . Polymer, 1997, 38, 2689-2699. | |$\quad 118$

8 Chain-Folded Lamellar Crystals of Aliphatic Polyamides. Comparisons between Nylons 4â€\% $4,6 \hat{a} € \% 4,8$ â $\% \circ 4,10 \hat{2} € \% 4$, and 12â€\%\%4. Macromolecules, 1996, 29, 6011-6018.
11 Micro-molding with ultrasonic vibration energy: New method to disperse nanoclays in polymer matrices. Ultrasonics Sonochemistry, 2014, 21, 1557-1569.

Nylon 65 has a Unique Structure with Two Directions of Hydrogen Bonds. Macromolecules, 1995, 28, 8742-8750.
2.2

50

Thermoplastic Polyurethane:Polythiophene Nanomembranes for Biomedical and Biotechnological

-

Article

\#	Article	IF	Citations
19	Molecular Packing of Polyesters Derived from 1,4-Butanediol and Even Aliphatic Dicarboxylic Acids. Macromolecules, 2004, 37, 5300-5309.	2.2	39
20	Thermal degradation studies of poly(trimethylene carbonate) blends with either polylactide or polycaprolactone. Thermochimica Acta, 2012, 550, 65-75.	1.2	39
21	Nylon 69 can crystallize with hydrogen bonding in two and in three interchain directions. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1153-1165.	2.4	38
22	Poly(ester amide)s derived from 1,4-butanediol, adipic acid and 6-aminohexanoic acid. Part II: composition changes and fillers. Polymer, 2003, 44, 6139-6152.	1.8	37
23	Hydrogels for flexible and compressible free standing cellulose supercapacitors. European Polymer Journal, 2019, 118, 347-357.	2.6	35
24	Structural data and thermal studies on nylon-12,10. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 2065-2073.	2.4	34
25	On the crystal structure of odd-even nylons: Polymorphism of nylon 5,10. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2383-2395.	2.4	33
26	Electrospun biodegradable polymers loaded with bactericide agents. AIMS Molecular Science, 2016, 3, 52-87.	0.3	32
27	Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties. Polymer Chemistry, 2013, 4, 568-583.	1.9	29
28	Thermoresponsive Shapeâ $€$ Memory Hydrogel Actuators Made by Phototriggered Click Chemistry. Advanced Functional Materials, 2020, 30, 2001683.	7.8	29
29	Poly(butylene azelate-co-butylene succinate) copolymers: Crystalline morphologies and degradation. Polymer Degradation and Stability, 2014, 99, 80-91.	2.7	28

30 Preparation and release study of ibuprofenâ€łoaded porous matrices of a biodegradable poly(ester) Tj ETQq0 00 rgBJ.3 /Overlockk 10 Tf 5

31 Synthesis and Structure of Nylons 1,n. Macromolecules, 1994, 27, 4284-4297.
$2.2 \quad 23$

Synthesis of Poly(ester amide)s Derived from Clycolic Acid and the Amino Acids:12-Alanine or
1.1

22
4-Aminobutyric Acid. Macromolecular Chemistry and Physics, 2003, 204, 2078-2089.

Crystallization kinetics of poly(hexamethylene succinate). European Polymer Journal, 2003, 39,
1575-1583.
2.6

22

Synthesis and Characterization of Poly(glycolic acid-alt-6-aminohexanoic acid) and Poly(glycolic) Tj ETQq0 00 rgBT d. P verlock ${ }_{22} 0 \mathrm{Tf} 501$

The hydrolytic degradation of a segmented glycolideâ $€^{\prime \prime}$ trimethylene carbonate copolymer (Maxonâ,, Φ).
Polymer Degradation and Stability, 2007, 92, 975-985.

Thermal stability and degradation studies of alternating poly(ester amide)s derived from glycolic acid and Ï\%o-amino acids. Journal of Applied Polymer Science, 2006, 102, 5545-5558.

39	Synthesis of glycolide/trimethylene carbonate copolymers: Influence of microstructure on properties. European Polymer Journal, 2012, 48, 60-73.	2.6	19
40	Preparation of Nanocomposites of Poly ($\hat{\mu}$-caprolactone) and Multi-Walled Carbon Nanotubes by Ultrasound Micro-Molding. Influence of Nanotubes on Melting and Crystallization. Polymers, 2017, 9, 322.	2.0	19
41	Crystalline Structure of Poly(decamethylene sebacate). Repercussions on Lamellar Folding Surfaces. Macromolecules, 2002, 35, 3630-3635.	2.2	18
42	Study of Non-Isothermal Crystallization of Polydioxanone and Analysis of Morphological Changes Occurring during Heating and Cooling Processes. Polymers, 2016, 8, 351.	2.0	18
43	Conformations of Nylons 1,n According to the Number of Methylene Carbons. Macromolecules, 1994, 27, 4298-4303.	2.2	17

$$
\begin{aligned}
& \text { Study of clay nanocomposites of the biodegradable polyhexamethylene succinate. Application of } \\
& \text { isoconversional analysis to nonisothermal crystallization. Journal of Polymer Science, Part B: } \\
& \text { Polymer Physics, 2008, 46, 2234-2248. }
\end{aligned}
$$

$$
2.4
$$

15
Poly(ester amide)/clay nanocomposites prepared by <i>in situ</i> polymerization of the sodium salt of
<i>N</i>â€chloroacetylâ€Gâ€aminohexanoic acid. Journal of Polymer Science Part A, 2009, 47, 3616-3629.
Isothermal and non-isothermal crystallization kinetics of a polyglycolide copolymer having a
tricomponent middle soft segment. Thermochimica Acta, 2014, 585, 71-80.1.214

Reversible changes induced by temperature in the spherulitic birefringence of nylon 6 9. Polymer, 2015,
76, 34-45.
\qquad
61 Study on the hydrolytic degradation of glycolide/trimethylene carbonate copolymers having \quad different microstructure and composition. Polymer Degradation and Stability, 2013, 98, 133-143. 2.7

Effect of Hydroxyapatite Nanoparticles on the Degradability of Random Poly(butylene) Tj ETQq0 00 rgBT /Overlock 10 Tf 50467 Td (ter 2016, 8, 253.
63 Incorporation of Chloramphenicol Loaded Hydroxyapatite Nanoparticles into Polylactide.

International Journal of Molecular Sciences, 2019, 20, 5056.

65 | Hydrolytic and enzymatic degradation of biobased poly(4-hydroxybutyrate) films. Selective etching of |
| :--- |
| spherulites. Polymer Degradation and Stability, 2021, 183, 109451. |

Isothermal crystallization of poly(glycolic acid-alt-6-hydroxyhexanoic acid) studied by DSC and real

1.8

10
time synchrotron SAXS/WAXD. Polymer, 2007, 48, 6018-6028.

Temperatureâ€induced structural changes in evenâ€odd nylons with long polymethylene segments.
67 Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2494-2506.
2.4

10

Incorporation of biguanide compounds into poly(GL)-b-poly(GL-co-TMC-co-CL)-b-poly(GL) monofilament
3.8

10 surgical sutures. Materials Science and Engineering C, 2017, 71, 629-640.

Tuning the Kinetic Stability of the Amorphous Phase of the Chloramphenicol Antibiotic. Molecular
2.3

10
Pharmaceutics, 2018, 15, 5615-5624.

70 Isothermal Crystallization Kinetics of Poly(4-hydroxybutyrate) Biopolymer. Materials, 2019, 12, 2488.
1.3

10

Preparation of Medicated Polylactide Micropieces by Means of Ultrasonic Technology. Applied
1.3

10
\qquad
$\left.\begin{array}{lll}\text { Thermal stability studies on clay nanocomposites prepared from a degradable poly(ester amide) } \\ \text { constituted by glycolic acid and 6-aminohexanoic acid. Thermochimica Acta, 2011, 512, 142-149. }\end{array}\right] .1 .2$

80 Crystallization kinetics of chain extended poly(L-lactide)s having different molecular structures.
Materials Chemistry and Physics, 2020, 240, 122217.

Synthesis and characterization of glycine copolymers of nylons 6 and 12. Journal of Polymer Science
Part A, 1995, 33, 727-741.

Nonisothermal crystallization studies on poly(4â€hydroxybutyric acidâ \in <i>alt</i>â $€$ glycolic acid). Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 121-133.

Study on the hydrolytic degradation of the segmented GL-b-[CL-co-TMC-co-CL]-b-CL copolymer with
application as monofilar surgical suture. Polymer Degradation and Stability, 2013, 98, 2709-2721.

Synthesis and characterization of poly(ester amides)s with a variable ratio of branched odd diamide units. Journal of Applied Polymer Science, 2014, 131, .
1.3

7

Study on the crystallization of multiarm stars with a poly(ethyleneimine) core and
poly(i μ-caprolactone) arms of different length. Thermochimica Acta, 2015, 607, 39-52.

Thermally Induced Structural Transitions of Nylon 49 as a New Example of Evenâ€"Odd Polyamides. Polymers, 2018, 10, 198.
2.0

7

Effect of curcumin on thermal degradation of poly(glycolic acid) and poly($\hat{\mu}$-caprolactone) blends.
Thermochimica Acta, 2020, 693, 178764.

Structure of oddâ€"even nylons derived from 2-methylpentamethylenediamine. Effect of the side methyl
group. Polymer, 1999, 40, 6887-6892.
1.8

6

Influence of degradation on the crystallization behaviour of a biodegradable segmented copolymer
89 constituted by glycolide and trimethylene carbonate units. Polymer Degradation and Stability, 2010,
2.7

95, 2376-2387.
Biodegradable Polylactide Scaffolds with Pharmacological Activity by Means of Ultrasound
Micromolding Technology. Applied Sciences (Switzerland), 2020, 10, 3106.
93 Incorporation of glycine residues in evenâ $€^{\prime \prime}$ even nylons disrupts their characteristic all-trans $\quad 1.8$

94 Crystallization kinetics of PGBG4: A sequential poly(ester amide) derived from glycine, 1,4-butanediol, and adipic acid. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 903-912.
2.45

Sequence analysis of glycolide and $\langle i\rangle p<|i\rangle$ â $€$ dioxanone copolymers. Journal of Polymer Science Part A,
$2009,47,6758-6770$.

Crystallization studies on a clay nanocomposite prepared from a degradable poly(ester amide)
96 constituted by glycolic acid and 6â€aminohexanoic acid. Polymer Engineering and Science, 2011, 51 1650-1661.
$97 \quad \begin{aligned} & \text { Nonisothermal crystallization behavior of a biodegradable segmented copolymer constituted by } \\ & \text { glycolide and trimethylene carbonate units. Journal of Applied Polymer Science, 2011, 119, 1548-1559. }\end{aligned}$
$98 \quad \begin{aligned} & \text { Influence of microstructure on the crystallization of segmented copolymers constituted by glycolide } \\ & \text { and trimethylene carbonate units. EXPRESS Polymer Letters, 2013, 7, 186-198. }\end{aligned}$
Study on the crystallization of poly(alkylene dicarboxylate)s derived from 1,9-nonanediol and
99 mixtures with different ratios of azelaic acid and pimelic acid units. Journal of Polymer Researc 2016, 23, 1.

100 Crystalline Structures and Structural Transitions of Copolyamides Derived from 1,4-Diaminobutane and Different Ratios of Clutaric and Azelaic Acids. Polymers, 2019, 11, 572.
2.0

5

101 | Poly(butylene succinate) matrices obtained by thermally-induced phase separation: Pore shape and |
| :--- |
| orientation affect drug release. Polymer, 2022, 252, 124916. |

> 104 Biodegradable nanofibrous scaffolds as smart delivery vehicles for amino acids. Journal of Applied Polymer Science, 2017, 134, .

A ARTICLE
IF
Citations
109
Copolymerization of potassium chloroacetate and potassium <i>N</i>â€chloroacetylâ€ 6 â €aminohexanoate. Journal of Applied Polymer Science, 2012, 126, 1425-1436.
1.3

3

Tunable Drug Loading and Reinforcement of Polycaprolactone Films by Means of Electrospun
$110 \quad$ Nanofibers of Glycolide Segmented Copolymers. Macromolecular Materials and Engineering, 2018, 303,
1700401.
111 Improvement of Biodegradability and Biocompatibility of Electrospun Scaffolds of Poly(butylene) Tj ETQq1 10.784314 rgBT /Overloci

Electrospun scaffolds for wound healing applications from poly(4â€hydroxybutyrate): A biobased and
112 biodegradable linear polymer with high elastomeric properties. Journal of Applied Polymer Science,
1.3

3 2022, 139, 51447.

113	Temperature dependence of the dynamics of methylene chains in aliphatic nylons of different chain length. Physica B: Condensed Matter, 2000, 276-278, 421-422.	1.3	2
114	Spherulites from polyamides with a structure characterized by three hydrogen-bond directions. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1719-1726.	2.4	2
115	Isothermal crystallization kinetics and spherulitic morphology of poly(4â€hydroxybutyric) Tj ETQq1 10.784314 rgBT /Overlock 10 Tf		
116	Alternating Copolyesters Constituted by Clycolic Acid Units. Macromolecular Chemistry and Physics, 2008, 209, 393-403.	1.1	2
117	Microspheres of new alternating copolyesters derived from glycolic acid units for controlled drug release. Journal of Applied Polymer Science, 2008, 110, 2127-2138.	1.3	2

Crystallization behavior of clay nanocomposites prepared from a degradable alternating copolyester
118 constituted by glycolic acid and 6â€hydroxyhexanoic acid. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 33-46.
Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene
carbonate copolymers. Materials Science and Engineering C, 2014, 42, 517-528.

$120 \quad$| Microstructural Changes during Degradation of Biobased Poly(4-hydroxybutyrate) Sutures. Polymers, |
| :--- |
| $2020,12,2024$. |

121

Ultrasound micromolding of porous polylactide/hydroxyapatite scaffolds. EXPRESS Polymer Letters,
$2021,15,389-403$.

2.8

Preparation of random poly(butylene alkylate-co-terephthalate)s with different methylene group contents: crystallization and degradation kinetics. Journal of Polymer Research, 2017, $24,1$.
1.2

1

Incorporation of chloramphenicol and captopril into
 of Applied Polymer Science, 2017, 134, .

