MarÃ-a Lourdes Franco GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/463447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. Journal of Polymer Science Part A, 2002, 40, 4141-4157.	2.5	176
2	Degradable Poly(ester amide)s for Biomedical Applications. Polymers, 2011, 3, 65-99.	2.0	176
3	Chain-folded lamellar crystals of aliphatic polyamides. Investigation of nylons 4 8, 4 10, 4 12, 6 10, 6 12, 6 18 and 8 12. Polymer, 1997, 38, 2689-2699.	1.8	118
4	Polyamides with a Choice of Structure and Crystal Surface Chemistry. Studies of Chain-Folded Lamellae of Nylons 8 10 and 10 12 and Comparison with the Other 2N2(N+ 1) Nylons 4 6 and 6 8. Macromolecules, 1997, 30, 3569-3578.	2.2	93
5	Brill transition and melt crystallization of nylon 56: An odd–even polyamide with two hydrogen-bonding directions. Polymer, 2010, 51, 5788-5798.	1.8	83
6	Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. Journal of Polymer Research, 2011, 18, 1903-1917.	1.2	66
7	Temperature-induced changes in chain-folded lamellar crystals of aliphatic polyamides. Investigation of nylons 2 6, 2 8, 2 10, and 2 12. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 675-688.	2.4	65
8	Chain-Folded Lamellar Crystals of Aliphatic Polyamides. Comparisons between Nylons 4 4, 6 4, 8 4, and 12 4. Macromolecules, 1996, 29, 6011-6018.	10 4, 2.2	64
9	Crystal Structures of Nylon 5,6. A Model with Two Hydrogen Bond Directions for Nylons Derived from Odd Diamines. Macromolecules, 1998, 31, 8540-8548.	2.2	64
10	New Sulfonated Polystyrene and Styrene–Ethylene/Butylene–Styrene Block Copolymers for Applications in Electrodialysis. Journal of Physical Chemistry B, 2012, 116, 11767-11779.	1.2	63
11	Micro-molding with ultrasonic vibration energy: New method to disperse nanoclays in polymer matrices. Ultrasonics Sonochemistry, 2014, 21, 1557-1569.	3.8	54
12	Nylon 65 has a Unique Structure with Two Directions of Hydrogen Bonds. Macromolecules, 1995, 28, 8742-8750.	2.2	50
13	Structure and Morphology of Odd Polyoxamides [Nylon 9,2]. A New Example of Hydrogen-Bonding Interactions in Two Different Directions. Macromolecules, 1998, 31, 3912-3924.	2.2	49
14	Thermoplastic Polyurethane:Polythiophene Nanomembranes for Biomedical and Biotechnological Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 9719-9732.	4.0	45
15	Copolymerization of glycolide and trimethylene carbonate. Journal of Polymer Science Part A, 2006, 44, 993-1013.	2.5	44
16	Biodegradable free-standing nanomembranes of conducting polymer:polyester blends as bioactive platforms for tissue engineering. Journal of Materials Chemistry, 2012, 22, 585-594.	6.7	42
17	Study on the crystallization of poly(butylene azelate-co-butylene succinate) copolymers. Thermochimica Acta, 2014, 575, 45-54.	1.2	41
18	Study on the Degradability of Poly(ester amide)s Related to Nylons and Polyesters 6,10 or 12,10. Macromolecular Chemistry and Physics, 2002, 203, 48-58.	1.1	40

#	Article	IF	CITATIONS
19	Molecular Packing of Polyesters Derived from 1,4-Butanediol and Even Aliphatic Dicarboxylic Acids. Macromolecules, 2004, 37, 5300-5309.	2.2	39
20	Thermal degradation studies of poly(trimethylene carbonate) blends with either polylactide or polycaprolactone. Thermochimica Acta, 2012, 550, 65-75.	1.2	39
21	Nylon 6 9 can crystallize with hydrogen bonding in two and in three interchain directions. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1153-1165.	2.4	38
22	Poly(ester amide)s derived from 1,4-butanediol, adipic acid and 6-aminohexanoic acid. Part II: composition changes and fillers. Polymer, 2003, 44, 6139-6152.	1.8	37
23	Hydrogels for flexible and compressible free standing cellulose supercapacitors. European Polymer Journal, 2019, 118, 347-357.	2.6	35
24	Structural data and thermal studies on nylon-12,10. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 2065-2073.	2.4	34
25	On the crystal structure of odd-even nylons: Polymorphism of nylon 5,10. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2383-2395.	2.4	33
26	Electrospun biodegradable polymers loaded with bactericide agents. AIMS Molecular Science, 2016, 3, 52-87.	0.3	32
27	Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties. Polymer Chemistry, 2013, 4, 568-583.	1.9	29
28	Thermoresponsive Shapeâ€Memory Hydrogel Actuators Made by Phototriggered Click Chemistry. Advanced Functional Materials, 2020, 30, 2001683.	7.8	29
29	Poly(butylene azelate-co-butylene succinate) copolymers: Crystalline morphologies and degradation. Polymer Degradation and Stability, 2014, 99, 80-91.	2.7	28
30	Preparation and release study of ibuprofenâ€loaded porous matrices of a biodegradable poly(ester) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5 24
31	Synthesis and Structure of Nylons 1,n. Macromolecules, 1994, 27, 4284-4297.	2.2	23
32	Synthesis of Poly(ester amide)s Derived from Glycolic Acid and the Amino Acids:β-Alanine or 4-Aminobutyric Acid. Macromolecular Chemistry and Physics, 2003, 204, 2078-2089.	1.1	22
33	Crystallization kinetics of poly(hexamethylene succinate). European Polymer Journal, 2003, 39, 1575-1583.	2.6	22
34	Synthesis and Characterization of Poly(glycolic acid-alt-6-aminohexanoic acid) and Poly(glycolic) Tj ETQq0 0 0 rg	BT /Overlc 1.1	ock_10 Tf 50 1
35	The hydrolytic degradation of a segmented glycolide–trimethylene carbonate copolymer (Maxon™). Polymer Degradation and Stability, 2007, 92, 975-985.	2.7	22

³⁶Biodegradability and biocompatibility of copoly(butylene sebacate-co-terephthalate)s. Polymer 2.7 21 Degradation and Stability, 2017, 135, 18-30.

#	Article	IF	CITATIONS
37	Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners. ACS Sustainable Chemistry and Engineering, 2022, 10, 2708-2719.	3.2	21
38	Thermal stability and degradation studies of alternating poly(ester amide)s derived from glycolic acid and ω-amino acids. Journal of Applied Polymer Science, 2006, 102, 5545-5558.	1.3	20
39	Synthesis of glycolide/trimethylene carbonate copolymers: Influence of microstructure on properties. European Polymer Journal, 2012, 48, 60-73.	2.6	19
40	Preparation of Nanocomposites of Poly(ε-caprolactone) and Multi-Walled Carbon Nanotubes by Ultrasound Micro-Molding. Influence of Nanotubes on Melting and Crystallization. Polymers, 2017, 9, 322.	2.0	19
41	Crystalline Structure of Poly(decamethylene sebacate). Repercussions on Lamellar Folding Surfaces. Macromolecules, 2002, 35, 3630-3635.	2.2	18
42	Study of Non-Isothermal Crystallization of Polydioxanone and Analysis of Morphological Changes Occurring during Heating and Cooling Processes. Polymers, 2016, 8, 351.	2.0	18
43	Conformations of Nylons 1,n According to the Number of Methylene Carbons. Macromolecules, 1994, 27, 4298-4303.	2.2	17
44	Synthesis of poly(ester amide)s with lateral groups from a bulk polycondensation reaction with formation of sodium chloride salts. Journal of Polymer Science Part A, 2008, 46, 661-667.	2.5	17
45	Study of clay nanocomposites of the biodegradable polyhexamethylene succinate. Application of isoconversional analysis to nonisothermal crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2234-2248.	2.4	15
46	Study on the brill transition and melt crystallization of nylon 65: A polymer able to adopt a structure with two hydrogen-bonding directions. European Polymer Journal, 2010, 46, 2063-2077.	2.6	15
47	Poly(ester amide)/clay nanocomposites prepared by <i>in situ</i> polymerization of the sodium salt of <i>N</i> â€chloroacetylâ€6â€aminohexanoic acid. Journal of Polymer Science Part A, 2009, 47, 3616-3629.	2.5	14
48	Preparation of micro-molded exfoliated clay nanocomposites by means of ultrasonic technology. Journal of Polymer Research, 2014, 21, 1.	1.2	14
49	Isothermal and non-isothermal crystallization kinetics of a polyglycolide copolymer having a tricomponent middle soft segment. Thermochimica Acta, 2014, 585, 71-80.	1.2	14
50	Reversible changes induced by temperature in the spherulitic birefringence of nylon 6 9. Polymer, 2015, 76, 34-45.	1.8	14
51	Non-Isothermal Crystallization Kinetics of Poly(4-Hydroxybutyrate) Biopolymer. Molecules, 2019, 24, 2840.	1.7	14
52	Smart design for a flexible, functionalized and electroresponsive hybrid platform based on poly(3,4-ethylenedioxythiophene) derivatives to improve cell viability. Journal of Materials Chemistry B, 2020, 8, 8864-8877.	2.9	14
53	Degradable polyoctamethylene suberate/clay nanocomposites. Crystallization studies by DSC and simultaneous SAXS/WAXD synchrotron radiation. European Polymer Journal, 2009, 45, 398-409.	2.6	13
54	Structural transitions of nylon 47 and clay influence on its crystallization behavior. European Polymer Journal, 2013, 49, 1354-1364.	2.6	13

4

#	Article	IF	CITATIONS
55	Nanospheres and nanocapsules of amphiphilic copolymers constituted by methoxypolyethylene glycol cyanoacrylate and hexadecyl cyanoacrylate units. EXPRESS Polymer Letters, 2013, 7, 2-20.	1.1	13
56	Poly(ε-caprolactone) films reinforced with chlorhexidine loaded electrospun polylactide microfibers. EXPRESS Polymer Letters, 2017, 11, 674-689.	1.1	13
57	Poly(ester amide)s derived from 1,4-butanediol, adipic acid and 6-aminohexanoic acid. Polymer Degradation and Stability, 2004, 85, 595-604.	2.7	12
58	Comparative thermal degradation studies on glycolide/trimethylene carbonate and lactide/trimethylene carbonate copolymers. Journal of Applied Polymer Science, 2007, 104, 3539-3553.	1.3	12
59	Thermal degradation studies on homopolymers and copolymers based on trimethylene carbonate and glycolide units. Thermochimica Acta, 2012, 528, 23-31.	1.2	12
60	Incorporation of triclosan into polydioxanone monofilaments and evaluation of the corresponding release. Journal of Applied Polymer Science, 2009, 114, 3440-3451.	1.3	11
61	Study on the hydrolytic degradation of glycolide/trimethylene carbonate copolymers having different microstructure and composition. Polymer Degradation and Stability, 2013, 98, 133-143.	2.7	11
62	Effect of Hydroxyapatite Nanoparticles on the Degradability of Random Poly(butylene) Tj ETQq0 0 0 rgBT /Overlo 2016, 8, 253.	ock 10 Tf 5 2.0	50 467 Td (tei 11
63	Incorporation of Chloramphenicol Loaded Hydroxyapatite Nanoparticles into Polylactide. International Journal of Molecular Sciences, 2019, 20, 5056.	1.8	11
64	Biphasic polylactide/polyamide 6,10 blends: Influence of composition on polyamide structure and polyester crystallization. Polymer, 2020, 202, 122676.	1.8	11
65	Hydrolytic and enzymatic degradation of biobased poly(4-hydroxybutyrate) films. Selective etching of spherulites. Polymer Degradation and Stability, 2021, 183, 109451.	2.7	11
66	Isothermal crystallization of poly(glycolic acid-alt-6-hydroxyhexanoic acid) studied by DSC and real time synchrotron SAXS/WAXD. Polymer, 2007, 48, 6018-6028.	1.8	10
67	Temperatureâ€induced structural changes in evenâ€odd nylons with long polymethylene segments. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2494-2506.	2.4	10
68	Incorporation of biguanide compounds into poly(GL)-b-poly(GL-co-TMC-co-CL)-b-poly(GL) monofilament surgical sutures. Materials Science and Engineering C, 2017, 71, 629-640.	3.8	10
69	Tuning the Kinetic Stability of the Amorphous Phase of the Chloramphenicol Antibiotic. Molecular Pharmaceutics, 2018, 15, 5615-5624.	2.3	10
70	Isothermal Crystallization Kinetics of Poly(4-hydroxybutyrate) Biopolymer. Materials, 2019, 12, 2488.	1.3	10
71	Preparation of Medicated Polylactide Micropieces by Means of Ultrasonic Technology. Applied Sciences (Switzerland), 2019, 9, 2360.	1.3	10
72	Incorporation of glycine residues in even–even polyamides. Part II: Nylons 6,10 and 12,10. Polymer, 1999, 40, 2429-2438.	1.8	9

#	Article	IF	CITATIONS
73	Isothermal crystallization study on a biodegradable segmented copolymer constituted by glycolide and trimethylene carbonate units. Journal of Applied Polymer Science, 2010, 116, 577-589.	1.3	9
74	Scaffolds with Tunable Properties Constituted by Electrospun Nanofibers of Polyglycolide and Poly(εâ€caprolactone). Macromolecular Materials and Engineering, 2018, 303, 1800100.	1.7	9
75	Nanocomposites based on chain extended poly(<scp>l</scp> -lactic acid)/carboxylated carbon nanotubes: Crystallization kinetics and lamellar morphology. Journal of Composite Materials, 2019, 53, 2131-2147.	1.2	9
76	Poly[(4-hydroxybutyric acid)-alt-(glycolic acid)]: Synthesis by Thermal Polycondensation of Metal Salts of 4-Chlorobutyric Acid Carboxymethyl Ester. Macromolecular Chemistry and Physics, 2006, 207, 90-103.	1.1	8
77	Thermal stability studies on clay nanocomposites prepared from a degradable poly(ester amide) constituted by glycolic acid and 6-aminohexanoic acid. Thermochimica Acta, 2011, 512, 142-149.	1.2	8
78	Influence of pH on Morphology and Structure during Hydrolytic Degradation of the Segmented GL-b-[GL-co-TMC-co-CL]-b-GL Copolymer. Fibers, 2015, 3, 348-372.	1.8	8
79	lsomeric cationic ionenes as n-dopant agents of poly(3,4-ethylenedioxythiophene) for <i>in situ</i> gelation. Soft Matter, 2018, 14, 6374-6385.	1.2	8
80	Crystallization kinetics of chain extended poly(L-lactide)s having different molecular structures. Materials Chemistry and Physics, 2020, 240, 122217.	2.0	8
81	Synthesis and characterization of glycine copolymers of nylons 6 and 12. Journal of Polymer Science Part A, 1995, 33, 727-741.	2.5	7
82	Nonisothermal crystallization studies on poly(4â€hydroxybutyric acidâ€ <i>alt</i> â€glycolic acid). Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 121-133.	2.4	7
83	Study on the hydrolytic degradation of the segmented GL-b-[GL-co-TMC-co-CL]-b-GL copolymer with application as monofilar surgical suture. Polymer Degradation and Stability, 2013, 98, 2709-2721.	2.7	7
84	Synthesis and characterization of poly(ester amides)s with a variable ratio of branched odd diamide units. Journal of Applied Polymer Science, 2014, 131, .	1.3	7
85	Study on the crystallization of multiarm stars with a poly(ethyleneimine) core and poly(lµ-caprolactone) arms of different length. Thermochimica Acta, 2015, 607, 39-52.	1.2	7
86	Thermally Induced Structural Transitions of Nylon 4 9 as a New Example of Even–Odd Polyamides. Polymers, 2018, 10, 198.	2.0	7
87	Effect of curcumin on thermal degradation of poly(glycolic acid) and poly(Îμ-caprolactone) blends. Thermochimica Acta, 2020, 693, 178764.	1.2	7
88	Structure of odd–even nylons derived from 2-methylpentamethylenediamine. Effect of the side methyl group. Polymer, 1999, 40, 6887-6892.	1.8	6
89	Influence of degradation on the crystallization behaviour of a biodegradable segmented copolymer constituted by glycolide and trimethylene carbonate units. Polymer Degradation and Stability, 2010, 95, 2376-2387.	2.7	6
90	Biodegradable Polylactide Scaffolds with Pharmacological Activity by Means of Ultrasound Micromolding Technology. Applied Sciences (Switzerland), 2020, 10, 3106.	1.3	6

#	Article	IF	CITATIONS
91	Smart systems related to polypeptide sequences. AIMS Materials Science, 2016, 3, 289-323.	0.7	6
92	Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate). Polymers, 2022, 14, 161.	2.0	6
93	Incorporation of glycine residues in even–even nylons disrupts their characteristic all-trans conformation. Polymer, 1998, 39, 5553-5560.	1.8	5
94	Crystallization kinetics of PGBG4: A sequential poly(ester amide) derived from glycine, 1,4-butanediol, and adipic acid. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 903-912.	2.4	5
95	Sequence analysis of glycolide and <i>p</i> â€dioxanone copolymers. Journal of Polymer Science Part A, 2009, 47, 6758-6770.	2.5	5
96	Crystallization studies on a clay nanocomposite prepared from a degradable poly(ester amide) constituted by glycolic acid and 6â€aminohexanoic acid. Polymer Engineering and Science, 2011, 51, 1650-1661.	1.5	5
97	Nonisothermal crystallization behavior of a biodegradable segmented copolymer constituted by glycolide and trimethylene carbonate units. Journal of Applied Polymer Science, 2011, 119, 1548-1559.	1.3	5
98	Influence of microstructure on the crystallization of segmented copolymers constituted by glycolide and trimethylene carbonate units. EXPRESS Polymer Letters, 2013, 7, 186-198.	1.1	5
99	Study on the crystallization of poly(alkylene dicarboxylate)s derived from 1,9-nonanediol and mixtures with different ratios of azelaic acid and pimelic acid units. Journal of Polymer Research, 2016, 23, 1.	1.2	5
100	Crystalline Structures and Structural Transitions of Copolyamides Derived from 1,4-Diaminobutane and Different Ratios of Glutaric and Azelaic Acids. Polymers, 2019, 11, 572.	2.0	5
101	Poly(butylene succinate) matrices obtained by thermally-induced phase separation: Pore shape and orientation affect drug release. Polymer, 2022, 252, 124916.	1.8	5
102	Synthesis of poly(glycolic acid-alt-12-aminododecanoic acid): The thermal polymerization kinetics of sodiumN-chloroacetyl-12-aminododecanoate. Journal of Polymer Science Part A, 2006, 44, 1199-1213.	2.5	4
103	Spherulitic morphologies of the triblock Poly(GL)-b-poly(GL-co-TMC-co-CL)-b-poly(GL) copolymer: Isothermal and non-isothermal crystallization studies. European Polymer Journal, 2015, 73, 222-236.	2.6	4
104	Biodegradable nanofibrous scaffolds as smart delivery vehicles for amino acids. Journal of Applied Polymer Science, 2017, 134, .	1.3	4
105	Thermal degradation of random copolyesters based on 1,4-butanediol, terepthalic acid and different aliphatic dicarboxylic acids. Thermochimica Acta, 2017, 654, 101-111.	1.2	4
106	Chloramphenicol loaded polylactide melt electrospun scaffolds for biomedical applications. International Journal of Pharmaceutics, 2021, 606, 120897.	2.6	4
107	Crystallographic structures on the sequential copolymer of $\hat{I}\mu$ -caprolactam and pyrrolidinone (nylon) Tj ETQq1 1	0.784314 1.8	l rggT /Overloo
108	Poly(ester amide) nanocomposites by in situ polymerization: Kinetic studies on polycondensation and crystallization. EXPRESS Polymer Letters, 2011, 5, 717-731.	1.1	3

#	Article	IF	CITATIONS
109	Copolymerization of potassium chloroacetate and potassium <i>N</i> â€chloroacetylâ€6â€aminohexanoate. Journal of Applied Polymer Science, 2012, 126, 1425-1436.	1.3	3
110	Tunable Drug Loading and Reinforcement of Polycaprolactone Films by Means of Electrospun Nanofibers of Glycolide Segmented Copolymers. Macromolecular Materials and Engineering, 2018, 303, 1700401.	1.7	3
111	Improvement of Biodegradability and Biocompatibility of Electrospun Scaffolds of Poly(butylene) Tj ETQq1 1 0.78	4314 rgBT 1.0] Verlock]
112	Electrospun scaffolds for wound healing applications from poly(4â€hydroxybutyrate): A biobased and biodegradable linear polymer with high elastomeric properties. Journal of Applied Polymer Science, 2022, 139, 51447.	1.3	3
113	Temperature dependence of the dynamics of methylene chains in aliphatic nylons of different chain length. Physica B: Condensed Matter, 2000, 276-278, 421-422.	1.3	2
114	Spherulites from polyamides with a structure characterized by three hydrogen-bond directions. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1719-1726.	2.4	2
115	Isothermal crystallization kinetics and spherulitic morphology of poly(4â€hydroxybutyric) Tj ETQq1 1 0.784314 rg	gBT /Overlo 2.4	ock 10 Tf 50
116	Polycondensation of Metal Salts of 6â€(2â€Chloroacetate)hexanoic Acid: A New Method to Synthesize Alternating Copolyesters Constituted by Glycolic Acid Units. Macromolecular Chemistry and Physics, 2008, 209, 393-403.	1.1	2
117	Microspheres of new alternating copolyesters derived from glycolic acid units for controlled drug release. Journal of Applied Polymer Science, 2008, 110, 2127-2138.	1.3	2
118	Crystallization behavior of clay nanocomposites prepared from a degradable alternating copolyester constituted by glycolic acid and 6â€hydroxyhexanoic acid. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 33-46.	2.4	2
119	Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers. Materials Science and Engineering C, 2014, 42, 517-528.	3.8	2
120	Microstructural Changes during Degradation of Biobased Poly(4-hydroxybutyrate) Sutures. Polymers, 2020, 12, 2024.	2.0	2
121	Ultrasound micromolding of porous polylactide/hydroxyapatite scaffolds. EXPRESS Polymer Letters, 2021, 15, 389-403.	1.1	2
122	Efficient Oneâ€Pot Preparation of Thermoresponsive Polyurethanes with Lower Critical Solution Temperatures. ChemPlusChem, 2021, 86, 1570-1576.	1.3	2
123	Preparation of random poly(butylene alkylate-co-terephthalate)s with different methylene group contents: crystallization and degradation kinetics. Journal of Polymer Research, 2017, 24, 1.	1.2	1
124	Incorporation of chloramphenicol and captopril into poly(GL)â€ <i>b</i> â€poly(GLâ€ <i>co</i> â€TMCâ€ <i>co</i> â€CL)â€ <i>b</i> â€poly(GL) monofilar surgical suture of Applied Polymer Science, 2017, 134, .	es 1Jo urnal	0
125	The effect of dodecylbenzenesulfonic acid molecules on poly(4,4-diphenylether-5,5-dibenzimidazole) films. Journal of Polymer Research, 2020, 27, 1.	1.2	0