

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4633927/publications.pdf Version: 2024-02-01

YIANG LI

#	Article	IF	CITATIONS
1	Co–Ferrocene MOF/Glucose Oxidase as Cascade Nanozyme for Effective Tumor Therapy. Advanced Functional Materials, 2020, 30, 1910085.	7.8	283
2	Synergistic thermoradiotherapy based on PEGylated Cu 3 BiS 3 ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials, 2017, 112, 164-175.	5.7	153
3	Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 20566.	6.7	148
4	Platinum Nanoparticles to Enable Electrodynamic Therapy for Effective Cancer Treatment. Advanced Materials, 2019, 31, e1806803.	11.1	130
5	Microneedle Coating Techniques for Transdermal Drug Delivery. Pharmaceutics, 2015, 7, 486-502.	2.0	115
6	FeS@BSA Nanoclusters to Enable H ₂ Sâ€Amplified ROSâ€Based Therapy with MRI Guidance. Advanced Science, 2020, 7, 1903512.	5.6	114
7	One Stone Two Birds: Zr-Fc Metal–Organic Framework Nanosheet for Synergistic Photothermal and Chemodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 20321-20330.	4.0	105
8	Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygenâ€Inductive Starvation/Electrodynamic Tumor Therapy. Advanced Science, 2020, 7, 2001223.	5.6	93
9	ZnS@BSA Nanoclusters Potentiate Efficacy of Cancer Immunotherapy. Advanced Materials, 2021, 33, e2104037.	11.1	89
10	Upconversion Composite Nanoparticles for Tumor Hypoxia Modulation and Enhanced Near-Infrared-Triggered Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 15494-15503.	4.0	86
11	Selfâ€Templated Synthesis of Singleâ€Crystal and Singleâ€Domain Ferroelectric Nanoplates. Angewandte Chemie - International Edition, 2012, 51, 9283-9287.	7.2	76
12	Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. Biomaterials, 2020, 255, 120202.	5.7	73
13	Ultrathin Anatase TiO ₂ Nanosheets for Highâ€Performance Photocatalytic Hydrogen Production. Small, 2017, 13, 1604115.	5.2	72
14	Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy. Nature Communications, 2022, 13, 2688.	5.8	70
15	Phage-based vaccines. Advanced Drug Delivery Reviews, 2019, 145, 40-56.	6.6	68
16	Cu–Ferroceneâ€Functionalized CaO ₂ Nanoparticles to Enable Tumorâ€Specific Synergistic Therapy with GSH Depletion and Calcium Overload. Advanced Science, 2021, 8, e2100241.	5.6	68
17	Nitrofurazone-loaded electrospun PLLA/sericin-based dual-layer fiber mats for wound dressing applications. RSC Advances, 2015, 5, 16940-16949.	1.7	57
18	Bismuth embedded silica nanoparticles loaded with autophagy suppressant to promote photothermal therapy. Biomaterials, 2019, 221, 119419.	5.7	54

XIANG LI

#	Article	IF	CITATIONS
19	ZnS@ZIF-8 core-shell nanoparticles incorporated with ICG and TPZ to enable H ₂ S-amplified synergistic therapy. Theranostics, 2020, 10, 7671-7682.	4.6	53
20	Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. Small, 2018, 14, e1801183.	5.2	52
21	Polarization-dependent epitaxial growth and photocatalytic performance of ferroelectric oxide heterostructures. Nano Energy, 2018, 45, 304-310.	8.2	50
22	Novel patterning of nano-bioceramics: template-assisted electrohydrodynamic atomization spraying. Journal of the Royal Society Interface, 2008, 5, 253-257.	1.5	48
23	Electrodeposition of silver nanoparticle arrays on ITO coated glass and their application as reproducible surface-enhanced Raman scattering substrate. Applied Surface Science, 2011, 258, 1831-1835.	3.1	45
24	Mesoporous silica nanoparticles with manipulated microstructures for drug delivery. Colloids and Surfaces B: Biointerfaces, 2012, 95, 274-278.	2.5	45
25	A Fibrous Localized Drug Delivery Platform with NIR-Triggered and Optically Monitored Drug Release. Langmuir, 2016, 32, 9083-9090.	1.6	45
26	Development and characterisation of cellulose based electrospun mats for buccal delivery of non-steroidal anti-inflammatory drug (NSAID). European Journal of Pharmaceutical Sciences, 2017, 102, 147-155.	1.9	44
27	Monodispersed LiFePO4@C core–shell nanostructures for a high power Li-ion battery cathode. Journal of Power Sources, 2014, 246, 696-702.	4.0	43
28	Mesopores induced zero thermal expansion in single-crystal ferroelectrics. Nature Communications, 2018, 9, 1638.	5.8	43
29	Ferric Hydroxide-Modified Upconversion Nanoparticles for 808 nm NIR-Triggered Synergetic Tumor Therapy with Hypoxia Modulation. ACS Applied Materials & Interfaces, 2019, 11, 385-393.	4.0	43
30	Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. Nano Research, 2020, 13, 2209-2215.	5.8	42
31	Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy. Journal of Nanobiotechnology, 2021, 19, 325.	4.2	42
32	Fe3O4@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy. Journal of Nanobiotechnology, 2021, 19, 206.	4.2	38
33	A novel jet-based nano-hydroxyapatite patterning technique for osteoblast guidance. Journal of the Royal Society Interface, 2010, 7, 189-197.	1.5	35
34	Tunable photoluminescence properties of well-aligned ZnO nanorod array by oxygen plasma post-treatment. Applied Surface Science, 2014, 289, 252-256.	3.1	35
35	Upconversion nanocrystal â€~armoured' silica fibres with superior photoluminescence for miRNA detection. Chemical Communications, 2018, 54, 6324-6327.	2.2	35
36	Multifunctional MoO2-ICG nanoplatform for 808nm-mediated synergetic photodynamic/photothermal therapy. Applied Materials Today, 2019, 15, 472-481.	2.3	35

Xiang Li

#	Article	IF	CITATIONS
37	Tailoring of textured transparent conductive SnO2:F thin films. Journal of Alloys and Compounds, 2013, 574, 427-431.	2.8	34
38	Near-infrared luminescent CaTiO ₃ :Nd ³⁺ nanofibers with tunable and trackable drug release kinetics. Journal of Materials Chemistry B, 2015, 3, 7449-7456.	2.9	34
39	Luminescent CaTiO ₃ :Yb,Er nanofibers co-conjugated with Rose Bengal and gold nanorods for potential synergistic photodynamic/photothermal therapy. Journal of Materials Chemistry B, 2017, 5, 5128-5136.	2.9	32
40	Development of nano-hydroxyapatite coating by electrohydrodynamic atomization spraying. Journal of Materials Science: Materials in Medicine, 2008, 19, 1545-1551.	1.7	31
41	Microstructural and functional stability of large-scale SnO2:F thin film with micro-nano structure. Journal of Alloys and Compounds, 2013, 550, 144-149.	2.8	30
42	Phase-Modified Up-Conversion Luminescence in Er-Doped Single-Crystal PbTiO ₃ Nanofibers. Journal of Physical Chemistry C, 2014, 118, 5486-5493.	1.5	28
43	Production of a fluorescence resonance energy transfer (FRET) biosensor membrane for microRNA detection. Journal of Materials Chemistry B, 2017, 5, 7133-7139.	2.9	28
44	A Dual-Color Luminescent Localized Drug Delivery System with Ratiometric-Monitored Doxorubicin Release Functionalities. ACS Biomaterials Science and Engineering, 2016, 2, 652-661.	2.6	27
45	Octahedral-shaped perovskite nanocrystals and their visible-light photocatalytic activity. Chemical Communications, 2014, 50, 6027-6030.	2.2	26
46	Hollow ferric-tannic acid nanocapsules with sustained O ₂ and ROS induction for synergistic tumor therapy. Biomaterials Science, 2020, 8, 3844-3855.	2.6	26
47	Novel preparation and characterization of porous alginate films. Carbohydrate Polymers, 2010, 79, 989-997.	5.1	25
48	pH-Triggered SrTiO ₃ :Er Nanofibers with Optically Monitored and Controlled Drug Delivery Functionality. ACS Applied Materials & Interfaces, 2015, 7, 25514-25521.	4.0	25
49	Sizeâ€Controlled Singleâ€Crystal Perovskite PbTiO ₃ Nanofibers from Edgeâ€Shared TiO ₆ Octahedron Columns. Small, 2012, 8, 2959-2963.	5.2	24
50	Gold nanorod-assembled ZnGa ₂ O ₄ :Cr nanofibers for LED-amplified gene silencing in cancer cells. Nanoscale, 2018, 10, 13432-13442.	2.8	24
51	Silica nanofibers with controlled mesoporous structure via electrospinning: From random to orientated. Materials Letters, 2013, 94, 100-103.	1.3	23
52	Crystallization and concentration modulated tunable upconversion luminescence of Er ³⁺ doped PZT nanofibers. Journal of Materials Chemistry C, 2015, 3, 382-389.	2.7	23
53	Synthesis of porous CaTiO3 nanotubes with tunable hollow structures via single-nozzle electrospinning. Materials Letters, 2015, 152, 82-85.	1.3	23
54	Electrostatic Force–Driven Oxide Heteroepitaxy for Interface Control. Advanced Materials, 2018, 30, e1707017.	11.1	23

Xiang Li

#	Article	IF	CITATIONS
55	Electrohydrodynamic deposition of nanotitanium doped hydroxyapatite coating for medical and dental applications. Journal of Materials Science: Materials in Medicine, 2011, 22, 491-496.	1.7	22
56	Delivery of amino acid oxidase <i>via</i> catalytic nanocapsules to enable effective tumor inhibition. Journal of Materials Chemistry B, 2020, 8, 8546-8557.	2.9	22
57	A feasible approach toward bioactive glass nanofibers with tunable protein release kinetics for bone scaffolds. Colloids and Surfaces B: Biointerfaces, 2014, 122, 785-791.	2.5	20
58	Facile synthesis and visible photocatalytic activity of single-crystal TiO ₂ /PbTiO ₃ heterostructured nanofiber composites. CrystEngComm, 2015, 17, 1024-1029.	1.3	20
59	Single-crystal nanofibers of Zr-doped new structured PbTiO3: hydrothermal synthesis, characterization and phase transformation. Journal of Materials Chemistry, 2011, 21, 3562.	6.7	19
60	Selective Deposition of Silver Oxide on Singleâ€Domain Ferroelectric Nanoplates and Their Efficient Visibleâ€Light Photoactivity. Chemistry - A European Journal, 2016, 22, 12160-12165.	1.7	19
61	A Multifunctional Nanocrystalline CaF ₂ :Tm,Yb@mSiO ₂ System for Dualâ€īriggered and Optically Monitored Doxorubicin Delivery. Particle and Particle Systems Characterization, 2016, 33, 896-905.	1.2	19
62	Rare-earth-doped upconversion nanocrystals embedded mesoporous silica nanoparticles for multiple microRNA detection. Chemical Engineering Journal, 2019, 374, 863-869.	6.6	19
63	Polarization-Modified Upconversion Luminescence in Er-Doped Single-Crystal Perovskite PbTiO ₃ Nanofibers. Journal of Physical Chemistry C, 2015, 119, 17326-17333.	1.5	18
64	Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO ₄ nanostructures self-assembled with (010) nanobelts for Li-ion battery positive cathodes. CrystEngComm, 2016, 18, 3282-3288.	1.3	18
65	Enhanced cell uptake of fluorescent drug-loaded nanoparticles via an implantable photothermal fibrous patch for more effective cancer cell killing. Journal of Materials Chemistry B, 2017, 5, 7504-7511.	2.9	18
66	Sulfiteâ€Inserted MgAl Layered Double Hydroxides Loaded with Glucose Oxidase to Enable SO ₂ â€Mediated Synergistic Tumor Therapy. Advanced Functional Materials, 2021, 31, 2103262.	7.8	18
67	Electrospray deposition of nanohydroxyapatite coatings: A strategy to mimic bone apatite mineral. Thin Solid Films, 2011, 519, 2328-2331.	0.8	17
68	Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol–gel based electrospinning. Journal of Alloys and Compounds, 2013, 579, 617-621.	2.8	17
69	Optically Monitoring Mineralization and Demineralization on Photoluminescent Bioactive Nanofibers. Langmuir, 2016, 32, 3226-3233.	1.6	17
70	Fibrous CaF2:Yb,Er@SiO2-PAA â€~tumor patch' with NIR-triggered and trackable DOX release. Materials and Design, 2017, 119, 85-92.	3.3	16
71	Implantable composite fibres with Self-supplied H2O2 for localized chemodynamic therapy. Chemical Engineering Journal, 2020, 388, 124211.	6.6	16
72	Single-Crystal BiFeO ₃ Nanoplates with Robust Antiferromagnetism. ACS Applied Materials & Interfaces, 2018, 10, 5785-5792.	4.0	15

XIANG LI

#	Article	lF	CITATIONS
73	Implantable fibrous scaffold with hierarchical microstructure for the â€~on-site' synergistic cancer therapy. Chemical Engineering Journal, 2020, 402, 126204.	6.6	15
74	ATP-responsive hollow nanocapsules for DOX/GOx delivery to enable tumor inhibition with suppressed P-glycoprotein. Nano Research, 2021, 14, 222-231.	5.8	15
75	Polymersome Nanoreactorâ€Mediated Combination Chemodynamicâ€Immunotherapy via ROS Production and Enhanced STING Activation. Advanced Therapeutics, 2021, 4, 2100130.	1.6	15
76	α-Fe2O3@Pt heterostructure particles to enable sonodynamic therapy with self-supplied O2 and imaging-guidance. Journal of Nanobiotechnology, 2021, 19, 358.	4.2	15
77	Effect of glass tempering on microstructure and functional properties of SnO2:F thin film prepared by atmosphere pressure chemical vapor deposition. Thin Solid Films, 2013, 544, 357-361.	0.8	14
78	Improved mechanical properties of SnO2:F thin film by structural modification. Ceramics International, 2014, 40, 2557-2564.	2.3	14
79	Pre-perovskite nanofiber: a new direct-band gap semiconductor with green and near infrared photoluminescence. RSC Advances, 2013, 3, 5453.	1.7	13
80	Growth and Bending-Sensitive Photoluminescence of a Flexible PbTiO ₃ /ZnO Nanocomposite. ACS Applied Materials & Interfaces, 2014, 6, 10935-10940.	4.0	13
81	A facile approach to upconversion crystalline CaF ₂ :Yb ³⁺ ,Tm ³⁺ @mSiO ₂ nanospheres for tumor therapy. RSC Advances, 2016, 6, 38365-38370.	1.7	13
82	Implantable fibrous â€~patch' enabling preclinical chemo-photothermal tumor therapy. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111005.	2.5	13
83	Hydrothermal synthesis of ferroelectric PbTiO3 nanoparticles with dominant {001} facets by titanate nanostructure. CrystEngComm, 2013, 15, 8036.	1.3	12
84	Facile synthesis of PbTiO3 truncated octahedra via solid-state reaction and their application in low-temperature CO oxidation by loading Pt nanoparticles. Journal of Materials Chemistry A, 2014, 2, 9035-9039.	5.2	12
85	Platinum–copper alloy nanoparticles armored with chloride ion transporter to promote electro-driven tumor inhibition. Bioactive Materials, 2022, 12, 143-152.	8.6	12
86	An electrically driven jetting technique for diverse high-resolution surface structures of nanometre hydroxyapatite crystals. Colloids and Surfaces B: Biointerfaces, 2011, 82, 562-570.	2.5	11
87	Synthesis of CaTiO ₃ Nanofibers with Controllable Drugâ€Release Kinetics. European Journal of Inorganic Chemistry, 2015, 2015, 4532-4538.	1.0	11
88	Zinc sulfide nanoparticle-decorated fibre mesh to enable localized H ₂ S-amplified chemotherapy. Chemical Communications, 2020, 56, 4304-4307.	2.2	11
89	Electrohydrodynamic coating of metal with nano-sized hydroxyapatite. Bio-Medical Materials and Engineering, 2007, 17, 335-46.	0.4	11
90	Theoretical and experimental study of Raman spectra of pre-perovskite PbTiO3. Journal of Applied Physics, 2011, 110, .	1.1	10

Xiang Li

#	Article	IF	CITATIONS
91	Doping and phase transformation of single-crystal pre-perovskite PbTiO3 fibers with TiO6 edge-shared octahedra. CrystEngComm, 2012, 14, 4520.	1.3	10
92	Surface plasmon enhanced blue–green photoluminescence from carbon-rich amorphous silicon carbide films. Journal of Alloys and Compounds, 2012, 513, 18-22.	2.8	10
93	The nc-Si films with controlled crystal structure and electrical conductivity via the re-crystallization approach. Journal of Non-Crystalline Solids, 2013, 359, 40-45.	1.5	10
94	Hydrothermal synthesis and formation mechanism of single-crystal Auivillius Bi4Ti3O12 nanosheets with ammonium bismuth citrate (C6H10BiNO8) as Bi sources. Journal of Crystal Growth, 2017, 476, 31-37.	0.7	10
95	A Bifunctional Scaffold for Tissue Regeneration and Photothermal Therapy. Journal of Biomedical Nanotechnology, 2018, 14, 698-706.	0.5	10
96	Biodegradable MnFe-hydroxide nanocapsules to enable multi-therapeutics delivery and hypoxia-modulated tumor treatment. Journal of Materials Chemistry B, 2020, 8, 3929-3938.	2.9	10
97	<p>VEGF-Modified PVA/Silicone Nanofibers Enhance Islet Function Transplanted in Subcutaneous Site Followed by Device-Less Procedure</p> . International Journal of Nanomedicine, 2020, Volume 15, 587-599.	3.3	10
98	EHDA Spraying: A Multi-Material Nano-Engineering Route. Current Pharmaceutical Design, 2015, 21, 3239-3247.	0.9	10
99	Catalytic core–shell nanoparticles with self-supplied calcium and H2O2 to enable combinational tumor inhibition. Journal of Nanobiotechnology, 2021, 19, 313.	4.2	10
100	Enhanced preferential orientation and electrical property of fluorine-doped SnO2 thin films via barrier layer. Materials Letters, 2014, 122, 143-146.	1.3	9
101	Constructing Implantable SrTiO ₃ :Yb,Ho Nanofibers for NIRâ€Triggered and Optically Monitored Chemotherapy. Chemistry - A European Journal, 2017, 23, 2423-2431.	1.7	9
102	Silica nanospheres entrapped with ultra-small luminescent crystals for protein delivery. Chemical Engineering Journal, 2017, 330, 166-174.	6.6	9
103	KCl-CaCO ₃ nanoclusters armoured with Pt nanocrystals for enhanced electro-driven tumor inhibition. Biomaterials Science, 2022, 10, 376-380.	2.6	9
104	Bright blue photoluminescence from the amorphous carbon via surface plasmon enhancement. Optics Express, 2011, 19, 17935.	1.7	8
105	Ag-silica composite nanotube with controlled wall structures for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 111, 693-698.	2.5	8
106	Dissolution/recrystallization growth of titanate nanostructures by amorphous precursor. Advanced Powder Technology, 2014, 25, 745-751.	2.0	8
107	A Reduced Graphene Oxide (rGO)â€Ferroelectrics Hybrid Nanocomposite as High Efficient Visibleâ€Lightâ€Driven Photocatalyst. ChemistrySelect, 2016, 1, 6020-6025.	0.7	7
108	Hierarchical nanoclusters with programmed disassembly for mitochondria-targeted tumor therapy with MR imaging. Biomaterials Science, 2021, 9, 8189-8201.	2.6	7

XIANG LI

#	Article	IF	CITATIONS
109	CaCO3-MnSiOx hybrid particles to enable CO2-mediated combinational tumor therapy. Nano Research, 2022, 15, 8281-8290.	5.8	6
110	Preparation and characterization of single-crystal multiferroic nanofiber composites. Journal of Alloys and Compounds, 2013, 552, 518-523.	2.8	5
111	A flexible smart membrane consisting of GO composite fibres and upconversion MSNs for microRNA detection. Chemical Communications, 2019, 55, 9104-9107.	2.2	5
112	NIR light-triggered peroxynitrite anion production <i>via</i> direct lanthanide-triplet photosensitization for enhanced photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 4501-4508.	2.9	5
113	Length-controlled synthesis and the photoluminescence of pre-perovskite PbTiO3 nanofibers. CrystEngComm, 2014, 16, 3567-3572.	1.3	4
114	Improved ferromagnetic properties of electrospun NiFe2O4 with tunable morphology: from multiparticle-chain to single-particle-chain. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	4
115	Molecular-mediated crystal growth of PbTiO3 nanostructure on silicon substrate. Applied Surface Science, 2011, 257, 9768-9772.	3.1	3
116	Generation of biomaterial particles with controlled dimensions via electrospraying. Open Journal of Regenerative Medicine, 2012, 01, 10-17.	0.5	3
117	First-principles study of structural stability and elastic property of pre-perovskite PbTiO 3. Chinese Physics B, 2012, 21, 016201.	0.7	3
118	Effect of atomic bonding configuration on optical properties of a-Si1â^'xCx:H thin film. Journal of Alloys and Compounds, 2013, 559, 20-23.	2.8	3
119	Core–shell SrTiO ₃ :Yb ³⁺ ,Er ³⁺ @mSiO ₂ nanoparticles for controlled and monitored doxorubicin delivery. RSC Advances, 2016, 6, 26280-26287.	1.7	3
120	FABRICATION OF NANOPOROUS CHITOSAN MEMBRANES. Nano, 2010, 05, 53-60.	0.5	2
121	Polymeric Based Therapeutic Delivery Systems Prepared Using Electrohydrodynamic Processes. Current Pharmaceutical Design, 2016, 22, 2873-2885.	0.9	2
122	Amorphous carbon-based films with surface-plasmon-enhanced full-color photoluminescence. Journal of Non-Crystalline Solids, 2012, 358, 1725-1729.	1.5	1
123	Hollow nanocapsules of NiFe hydroxides to enable doxorubicin delivery and combinational tumour therapy. Biomaterials Science, 2021, 9, 2598-2607.	2.6	1