
Steven K Dower

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4633865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lift and drag forces acting on a particle moving with zero slip in a linear shear flow near a wall. Journal of Fluid Mechanics, 2020, 904, .	3.4	14
2	FVIII half-life extension by coadministration of a D′D3 albumin fusion protein in mice, rabbits, rats, and monkeys. Blood Advances, 2020, 4, 1870-1880.	5.2	4
3	Modeling Thrombin Generation in Plasma under Diffusion and Flow. Biophysical Journal, 2020, 119, 162-181.	0.5	0
4	Antibody-mediated inhibition of FXIIa blocks downstream bradykinin generation. Journal of Allergy and Clinical Immunology, 2018, 142, 1355-1358.	2.9	31
5	Haemopedia: An Expression Atlas of Murine Hematopoietic Cells. Stem Cell Reports, 2016, 7, 571-582.	4.8	88
6	Competition between members of the tribbles pseudokinase protein family shapes their interactions with mitogen activated protein kinase pathways. Scientific Reports, 2016, 6, 32667.	3.3	40
7	Interleukin-1 Regulates Multiple Atherogenic Mechanisms in Response to Fat Feeding. PLoS ONE, 2009, 4, e5073.	2.5	105
8	A central role for monocytes in Tollâ€like receptorâ€mediated activation of the vasculature. Immunology, 2009, 128, 58-68.	4.4	24
9	Immunomics: At the Forefront of Innate Immunity Research. , 2009, , 15-38.		0
10	Analysis of innate immune signal transduction with autocatalytic expression vectors. Journal of Immunological Methods, 2008, 330, 96-108.	1.4	3
11	Pathological networking: a new approach to understanding COPD. Postgraduate Medical Journal, 2008, 84, 259-264.	1.8	20
12	Tribbles-2 is a novel regulator of inflammatory activation of monocytes. International Immunology, 2008, 20, 1543-1550.	4.0	53
13	Practical and Conceptual Models of Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 2007, 4, 606-610.	3.5	6
14	Targeting the Networks that Underpin Contiguous Immunity in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 306-311.	5.6	51
15	Human Tribbles-1 Controls Proliferation and Chemotaxis of Smooth Muscle Cells via MAPK Signaling Pathways. Journal of Biological Chemistry, 2007, 282, 18379-18387.	3.4	121
16	Fluorescent Protein Reporter Systems for Single-Cell Measurements. , 2007, 411, 111-119.		1
17	Identifying and hurdling obstacles to translational research. Nature Reviews Immunology, 2007, 7, 77-82.	22.7	46
18	Cooperative molecular and cellular networks regulate Tollâ€like receptorâ€dependent inflammatory responses. FASEB Journal. 2006. 20. 2153-2155.	0.5	76

#	Article	IF	CITATIONS
19	Interleukin-1β and Signaling of Interleukin-1 in Vascular Wall and Circulating Cells Modulates the Extent of Neointima Formation in Mice. American Journal of Pathology, 2006, 168, 1396-1403.	3.8	107
20	Potentiation of TLR4 signalling by plasmin activity. Biochemical and Biophysical Research Communications, 2006, 341, 299-303.	2.1	18
21	Action of intracellular IL-1Ra (Type 1) is independent of the IL-1 intracellular signalling pathway. Cytokine, 2006, 33, 274-280.	3.2	23
22	Feedback loops in intracellular signal processing and their potential for identifying novel signalling proteins. Cellular Immunology, 2006, 244, 158-161.	3.0	7
23	Functional mapping and identification of novel regulators for the Toll/Interleukin-1 signalling network by transcription expression cloning. Cellular Signalling, 2006, 18, 202-214.	3.6	65
24	Proinflammatory activation of Toll-like receptor-2 during exposure of penicillin-resistant Streptococcus pneumoniae to Â-lactam antibiotics. Journal of Antimicrobial Chemotherapy, 2006, 59, 35-42.	3.0	3
25	Toll-like receptors and chronic lung disease. Clinical Science, 2005, 109, 125-133.	4.3	66
26	Synergistic Effect of Avemar on Proinflammatory Cytokine Production and Ras-Mediated Cell Activation. Annals of the New York Academy of Sciences, 2005, 1051, 515-528.	3.8	12
27	Regulation of human neutrophil chemokine receptor expression and function by activation of Toll-like receptors 2 and 4. Immunology, 2005, 115, 90-98.	4.4	60
28	Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thrombosis and Haemostasis, 2005, , .	3.4	110
29	Interleukin-1 receptor antagonist alters the response to vessel wall injury in a porcine coronary artery model. Cardiovascular Research, 2005, 68, 493-501.	3.8	40
30	The Role of Toll-Like Receptors in the Regulation of Neutrophil Migration, Activation, and Apoptosis. Clinical Infectious Diseases, 2005, 41, S421-S426.	5.8	169
31	Endotoxin tolerance induces selective alterations in neutrophil function. Journal of Leukocyte Biology, 2005, 78, 1301-1305.	3.3	36
32	The expression and roles of Toll-like receptors in the biology of the human neutrophil. Journal of Leukocyte Biology, 2005, 77, 886-892.	3.3	143
33	Agonists of Toll-like Receptors 2 and 4 Activate Airway Smooth Muscle via Mononuclear Leukocytes. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 814-822.	5.6	84
34	Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thrombosis and Haemostasis, 2005, 94, 831-8.	3.4	104
35	Three Novel Bid Proteins Generated by Alternative Splicing of the Human Bid Gene. Journal of Biological Chemistry, 2004, 279, 2846-2855.	3.4	31
36	The glycopeptide vancomycin does not enhance toll-like receptor 2 (TLR2) activation by Streptococcus pneumoniae. Journal of Antimicrobial Chemotherapy, 2004, 54, 76-78.	3.0	5

#	Article	IF	CITATIONS
37	Secretion of Intracellular IL-1 Receptor Antagonist (Type 1) Is Dependent on P2X7 Receptor Activation. Journal of Immunology, 2004, 173, 1202-1208.	0.8	90
38	Toll-Like Receptor (TLR)2 and TLR4 Agonists Regulate CCR Expression in Human Monocytic Cells. Journal of Immunology, 2004, 172, 4977-4986.	0.8	91
39	Human Tribbles, a Protein Family Controlling Mitogen-activated Protein Kinase Cascades. Journal of Biological Chemistry, 2004, 279, 42703-42708.	3.4	292
40	Hunting for genes by functional screens. Cytokine and Growth Factor Reviews, 2004, 15, 97-102.	7.2	13
41	The Role of Interleukin-1β in Direct and Toll-Like Receptor 4-Mediated Neutrophil Activation and Survival. American Journal of Pathology, 2004, 165, 1819-1826.	3.8	89
42	Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound in Medicine and Biology, 2003, 29, 1453-1461.	1.5	57
43	Toll-Like Receptors in Health and Disease: Complex Questions Remain. Journal of Immunology, 2003, 171, 1630-1635.	0.8	198
44	Selective Roles for Toll-Like Receptor (TLR)2 and TLR4 in the Regulation of Neutrophil Activation and Life Span. Journal of Immunology, 2003, 170, 5268-5275.	0.8	306
45	Activation of Toll-Like Receptor 2 (TLR2) and TLR4/MD2 by Neisseria Is Independent of Capsule and Lipooligosaccharide (LOS) Sialylation but Varies Widely among LOS from Different Strains. Infection and Immunity, 2003, 71, 3901-3908.	2.2	65
46	Penicillin Enhances the Tollâ€Like Receptor 2–Mediated Proinflammatory Activity ofStreptococcus pneumoniae. Journal of Infectious Diseases, 2003, 188, 1040-1048.	4.0	30
47	Acceleration of Human Neutrophil Apoptosis by TRAIL. Journal of Immunology, 2003, 170, 1027-1033.	0.8	164
48	Regulation of nuclear translocation of nuclear factor-kappaB relA: evidence for complex dynamics at the single-cell level. Biochemical Journal, 2003, 369, 331-339.	3.7	27
49	Identification of Threonine 66 as a Functionally Critical Residue of the Interleukin-1 Receptor-associated Kinase. Journal of Biological Chemistry, 2002, 277, 37414-37421.	3.4	24
50	The Role of TLRs in Leukocyte Function. Clinical Science, 2002, 103, 55P-55P.	0.0	0
51	Toll-Like Receptor (TLR)2 and TLR4 in Human Peripheral Blood Granulocytes: A Critical Role for Monocytes in Leukocyte Lipopolysaccharide Responses. Journal of Immunology, 2002, 168, 4701-4710.	0.8	347
52	Tollâ€like receptors: their role in allergy and nonâ€ellergic inflammatory disease. Clinical and Experimental Allergy, 2002, 32, 984-989.	2.9	72
53	Rapid Secretion of Interleukin- $1\hat{l}^2$ by Microvesicle Shedding. Immunity, 2001, 15, 825-835.	14.3	767
54	A Method for Enhancing the Transfection Efficiency of Minipreps Obtained from Plasmid cDNA Libraries. Analytical Biochemistry, 2001, 288, 230-232.	2.4	8

#	Article	IF	CITATIONS
55	Regulation of Toll-Like Receptors in Human Monocytes and Dendritic Cells. Journal of Immunology, 2001, 166, 249-255.	0.8	542
56	Cytokines, virokines and the evolution of immunity. Nature Immunology, 2000, 1, 367-368.	14.5	103
57	Evidence for an Accessory Protein Function for Toll-Like Receptor 1 in Anti-Bacterial Responses. Journal of Immunology, 2000, 165, 7125-7132.	0.8	257
58	A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10162-10167.	7.1	422
59	Identification of Two Major Sites in the Type I Interleukin-1 Receptor Cytoplasmic Region Responsible for Coupling to Pro-inflammatory Signaling Pathways. Journal of Biological Chemistry, 2000, 275, 4670-4678.	3.4	260
60	Dynamic Shuttling of Nuclear Factor κB between the Nucleus and Cytoplasm as a Consequence of Inhibitor Dissociation. Journal of Biological Chemistry, 2000, 275, 41028-41034.	3.4	134
61	Minimal cross-linking and epitope requirements for CD40-dependent suppression of apoptosis contrast with those for promotion of the cell cycle and homotypic adhesions in human B cells. International Immunology, 1999, 11, 11-20.	4.0	58
62	Recruitment of a Heparan Sulfate Subunit to the Interleukin-1 Receptor Complex. Journal of Biological Chemistry, 1999, 274, 20103-20109.	3.4	14
63	Activation of Nuclear Factor κB in Single Living Cells. Journal of Biological Chemistry, 1999, 274, 37941-37949.	3.4	61
64	Interleukin 1 (IL-1) Causes Changes in Lateral and Rotational Mobilities of IL-1 Type I Receptors. Biochemistry, 1999, 38, 1618-1625.	2.5	5
65	NF-κB activation in single living cells — Analysis of anti-apoptosis and kinetics of activation by IL-1β. Biochemical Society Transactions, 1999, 27, A94-A94.	3.4	0
66	Activation of Nuclear Transcription Factor NF-κB by Interleukin-1 Is Accompanied by Casein Kinase II-mediated Phosphorylation of the p65 Subunit. Journal of Biological Chemistry, 1997, 272, 32606-32612.	3.4	193
67	Interleukin-1 receptors. Biomembranes: A Multi-Volume Treatise, 1997, 6, 147-175.	0.1	0
68	Chromosomal Localization ofTIL,a Gene Encoding a Protein Related to theDrosophilaTransmembrane Receptor Toll, to Human Chromosome 4p14. Genomics, 1996, 32, 486-488.	2.9	95
69	Inhibition of interleukin-1 responsiveness by type II receptor gene transfer: a surface "receptor" with anti-interleukin-1 function Journal of Experimental Medicine, 1996, 183, 1841-1850.	8.5	95
70	Cloning of a Putative Ligand for the T1/ST2 Receptor. Journal of Biological Chemistry, 1996, 271, 5784-5789.	3.4	66
71	T1/ST2 Signaling Establishes It as a Member of an Expanding Interleukin-1 Receptor Family. Journal of Biological Chemistry, 1996, 271, 5777-5783.	3.4	186
72	IL-1Rrp Is a Novel Receptor-like Molecule Similar to the Type I Interleukin-1 Receptor and Its Homologues T1/ST2 and IL-1R AcP. Journal of Biological Chemistry, 1996, 271, 3967-3970.	3.4	176

#	Article	IF	CITATIONS
73	Recombinant CD30 ligand and CD40 ligand share common biological activities on Hodgkin and Reed-Sternberg cells. European Journal of Immunology, 1995, 25, 2083-2089.	2.9	73
74	Fluorescence Resonance Energy Transfer Reveals Interleukin (IL)-1-dependent Aggregation of IL-1 Type I Receptors That Correlates with Receptor Activation. Journal of Biological Chemistry, 1995, 270, 27562-27568.	3.4	50
75	Molecular characterization of the pan-B cell antigen CDw78 as a MHC class II molecule by direct expression cloning of the transcription factor CIITA. International Immunology, 1995, 7, 1087-1092.	4.0	8
76	Understanding the dendritic cell lineage through a study of cytokine receptors Journal of Experimental Medicine, 1994, 179, 1767-1776.	8.5	80
77	The type II â€~decoy' receptor: A novel regulatory pathway for interleukin 1. Trends in Immunology, 1994, 15, 562-566.	7.5	337
78	The Two Interleukin-1 Receptors Play Different Roles in IL-1 Actions. Clinical Immunology and Immunopathology, 1994, 72, 9-14.	2.0	110
79	Monoclonal antibody 1994-01 (also known as ALVA 42) reported to recognize type II IL-1 receptor is specific for HLA-DR alpha and beta chains. Cytokine, 1994, 6, 83-86.	3.2	17
80	Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science, 1993, 261, 472-475.	12.6	935
81	Comparison of IL-1α effectiveness in activating murine pre-B and T cell lines. Cytokine, 1993, 5, 416-426.	3.2	11
82	Interleukin 1 signaling occurs exclusively via the type I receptor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6155-6159.	7.1	565
83	Pharmacological, Biochemical, and Molecular Biological Studies on Cytokine Receptors. Methods in Neurosciences, 1993, 16, 3-32.	0.5	0
84	Interleukin 1 participates in the development of anti-Listeria responses in normal and SCID mice Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1011-1015.	7.1	104
85	Evidence that map (mitogen-activated protein) kinase activation may be a necessary but not sufficient signal for a restrictive subset of responses in IL-1-treated epidermoid cells. Cytokine, 1992, 4, 429-440.	3.2	29
86	Molecular characterization of the interleukin-1 receptor (IL-1R) on monocytes and polymorphonuclear cells. Cytokine, 1992, 4, 90-95.	3.2	35
87	Interleukin 1. Advances in Neuroimmunology, 1992, 2, 1-16.	1.8	15
88	Regulation of Murine B-Cell Growth in Vitro by Infection with a Retroviral Vector Containing the Murine IL-1R. Annals of the New York Academy of Sciences, 1992, 651, 474-476.	3.8	0
89	The Interleukin-1 System: Receptors, Ligands and Signals. Chemical Immunology and Allergy, 1992, 51, 33-64.	1.7	20
90	The Interleukin-1 System: Receptors, Ligands and Signals (Part 1 of 2). Chemical Immunology and Allergy, 1992, 51, 33-45.	1.7	30

#	Article	IF	CITATIONS
91	Structure and function of IL-1 receptors. Fresenius' Journal of Analytical Chemistry, 1992, 343, 15-15.	1.5	0
92	Evidence that interleukin-1 and phorbol esters activate NF-kappa B by different pathways: role of protein kinase C Molecular Biology of the Cell, 1991, 2, 329-335.	6.5	69
93	Phorbol ester induces phosphorylation of the 80 kilodalton murine interleukin 1 receptor at a single threonine residue. Biochemical and Biophysical Research Communications, 1991, 177, 61-67.	2.1	8
94	Interleukin 1 beta induces rapid phosphorylation and redistribution of talin: a possible mechanism for modulation of fibroblast focal adhesion Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1232-1236.	7.1	77
95	Biology of the Interleukin-1 Receptor. Journal of Investigative Dermatology, 1990, 94, s68-s73.	0.7	47
96	A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science, 1990, 248, 1019-1023.	12.6	989
97	Human cytokine receptors. Journal of Clinical Immunology, 1990, 10, 289-299.	3.8	35
98	Regulation of alloreactivity in vivo by a soluble form of the interleukin-1 receptor. Science, 1990, 248, 739-742.	12.6	245
99	Murine interleukin 7 (IL-7) receptor. Characterization on an IL-7-dependent cell line Journal of Experimental Medicine, 1990, 171, 1073-1089.	8.5	145
100	Molecular Heterogeneity of Interleukin-1 Receptors. Annals of the New York Academy of Sciences, 1990, 594, 231-239.	3.8	11
101	Cloning of the human and murine interleukin-7 receptors: Demonstration of a soluble form and homology to a new receptor superfamily. Cell, 1990, 60, 941-951.	28.9	619
102	Structure and Function of Murine and Human IL-1 Receptors. , 1990, , 137-172.		5
103	Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science, 1989, 243, 393-396.	12.6	660
104	Regulation of interleukin 1 and its receptor in human keratinocytes Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1273-1277.	7.1	120
105	T-cell interleukin 1 receptor cDNA expressed in Chinese hamster ovary cells regulates functional responses to interleukin 1 Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3045-3049.	7.1	105
106	Evidence for different interleukin 1 receptors in murine B- and T-cell lines Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8034-8038.	7.1	168
107	Cloning the interleukin 1 receptor from human T cells Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8946-8950.	7.1	261
108	cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science, 1988, 241, 585-589.	12.6	884

#	Article	IF	CITATIONS
109	Interleukin 1 binds to specific receptors on human keratinocytes and induces granulocyte macrophage colony-stimulating factor mRNA and protein. A potential autocrine role for interleukin 1 in epidermis Journal of Clinical Investigation, 1988, 82, 1787-1792.	8.2	127
110	Determination of the minimum polypeptide lengths of the functionally active sites of human interleukins 1 alpha and 1 beta Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4572-4576.	7.1	96
111	The interleukin-1 receptor. Trends in Immunology, 1987, 8, 46-51.	7.5	175
112	Characterization of Interleukin-1 Receptors. , 1987, , 105-116.		0
113	High level stable expression of human interleukin-2 receptors in mouse cells generates only low affinity interleukin-2 binding sites. Molecular Immunology, 1986, 23, 935-941.	2.2	11
114	Similarity between the interleukin 1 receptors on a murine T-lymphoma cell line and on a murine fibroblast cell line Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 1060-1064.	7.1	139
115	The cell surface receptors for interleukin-1α and interleukin-1β are identical. Nature, 1986, 324, 266-268.	27.8	442
116	The molecular forms of interleukin-1. Immunologic Research, 1986, 5, 271-280.	2.9	20
117	Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies Journal of Clinical Investigation, 1986, 77, 860-867.	8.2	277
118	Detection and characterization of high affinity plasma membrane receptors for human interleukin 1 Journal of Experimental Medicine, 1985, 162, 501-515.	8.5	417
119	Quantitative measurement of human interleukin 2 receptor levels with intact and detergent-solubilized human T-cells. Molecular Immunology, 1985, 22, 937-947.	2.2	19
120	Cloning, sequence and expression of human interleukin-2 receptor. Nature, 1984, 312, 768-771.	27.8	281
121	The role of non-immune IgG in controlling IgG-mediated effector functions. Molecular Immunology, 1983, 20, 1177-1189.	2.2	33
122	Monoclonal anitbodies in the lymphatics: toward the diagnosis and therapy of tumor metastases. Science, 1982, 218, 1334-1337.	12.6	58
123	Mechanism of binding of multivalent immune complexes to Fc receptors. 2. Kinetics of binding. Biochemistry, 1981, 20, 6335-6340.	2.5	52
124	Mechanism of binding of multivalent immune complexes to Fc receptors. 1. Equilibrium binding. Biochemistry, 1981, 20, 6326-6334.	2.5	99
125	C1q binding to antibody-coated cells: Predictions from a simple multivalent binding model. Molecular Immunology, 1981, 18, 823-829.	2.2	19
126	The binding of 2,4,6-trinitrophenyl derivatives to the mouse myeloma immunoglobulin A protein MOPC 315. Biochemical Journal, 1978, 169, 179-188.	3.7	18

#	Article	IF	CITATIONS
127	The combining site of the dinitrophenyl-binding immunoglobulin A myeloma protein MOPC 315. Biochemical Journal, 1977, 165, 207-223.	3.7	44