Cécile Vignal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4633634/publications.pdf

Version: 2024-02-01

24 papers 1,328 citations

16 h-index 18 g-index

24 all docs

24 docs citations

times ranked

24

1881 citing authors

#	Article	IF	CITATIONS
1	Review article: Epidemiological and animal evidence for the role of air pollution in intestinal diseases. Science of the Total Environment, 2021, 757, 143718.	3.9	43
2	Fineâ€scale geographical distribution and ecological risk factors for Crohn's disease in France (2007â€2014). Alimentary Pharmacology and Therapeutics, 2020, 51, 139-148.	1.9	8
3	Aluminum Ingestion Promotes Colorectal Hypersensitivity in Rodents. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 185-196.	2.3	19
4	Chronic ingestion of deoxynivalenol at human dietary levels impairs intestinal homeostasis and gut microbiota in mice. Archives of Toxicology, 2018, 92, 2327-2338.	1.9	50
5	High carriage of adherent invasive E. coli in wildlife and healthy individuals. Gut Pathogens, 2018, 10, 23.	1.6	14
6	Alteration of lung defense mechanisms after acute and chronic exposure to urban coarse PM., 2018, , .		0
7	Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Particle and Fibre Toxicology, 2017, 14, 46.	2.8	49
8	Gut: An underestimated target organ for Aluminum. Morphologie, 2016, 100, 75-84.	0.5	32
9	Toxicological consequences of experimental exposure to aluminum in human intestinal epithelial cells. Food and Chemical Toxicology, 2016, 91, 108-116.	1.8	30
10	Mo1823 Highlighting of Epidemic Areas of Crohn's Disease in a Population-Based Registry Over 22 Years: Genetic or Environmental Cause?. Gastroenterology, 2016, 150, S785-S786.	0.6	0
11	Does oral exposure to cadmium and lead mediate susceptibility to colitis? The dark-and-bright sides of heavy metals in gut ecology. Scientific Reports, 2016, 6, 19200.	1.6	46
12	Su1868 Dissecting the Role of RAGE in Intestinal Fibrosis. Gastroenterology, 2016, 150, S575.	0.6	0
13	Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunology, 2014, 7, 589-601.	2.7	78
14	Sa1810 Antibiotics Induced Massive and Long Lasting Increase of the Adherent Intestinal Microflora With Highly Pathogenic Bacteria. Gastroenterology, 2013, 144, S-311.	0.6	0
15	AIEC colonization and pathogenicity: Influence of previous antibiotic treatment and preexisting inflammation. Inflammatory Bowel Diseases, 2012, 18, 1923-1931.	0.9	35
16	Aluminum Enhances Inflammation and Decreases Healing in Experimental Models of Colitis. Gastroenterology, 2011, 140, S-493.	0.6	0
17	Antibiotics Induced Commensal Flora Disruption Favours Escherichia coli AIEC (LF82) Colonization in Wild Type and NOD2 Knock-out Mice. Gastroenterology, 2011, 140, S-324.	0.6	O
18	The Drosophila Peptidoglycan Recognition ProteinÂPGRP-LF Blocks PGRP-LC and IMD/JNK Pathway Activation. Cell Host and Microbe, 2008, 3, 293-303.	5.1	148

#	Article	IF	CITATION
19	How NOD2 mutations predispose to Crohn's disease?. Microbes and Infection, 2007, 9, 658-663.	1.0	34
20	Nod-Like Receptors: Cytosolic Watchdogs for Immunity against Pathogens. PLoS Pathogens, 2007, 3, e152.	2.1	53
21	NODs in defence: from vulnerable antimicrobial peptides to chronic inflammation. Trends in Microbiology, 2006, 14, 432-438.	3.5	44
22	Downregulation of the Drosophila Immune Response by Peptidoglycan-Recognition Proteins SC1 and SC2. PLoS Pathogens, 2006, 2, e14.	2.1	290
23	Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nature Immunology, 2004, 5, 1175-1180.	7.0	227
24	Lipomannans, But Not Lipoarabinomannans, Purified from <i>Mycobacterium chelonae</i> and <i>Mycobacterium kansasii</i> Induce TNF-α and IL-8 Secretion by a CD14-Toll-Like Receptor 2-Dependent Mechanism. Journal of Immunology, 2003, 171, 2014-2023.	0.4	128