Zheng Yan

List of Publications by Citations

Source: https://exaly.com/author-pdf/463354/zheng-yan-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 10,019 72 44 h-index g-index citations papers 80 11,174 15.4 5.99 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
72	Growth of graphene from solid carbon sources. <i>Nature</i> , 2010 , 468, 549-52	50.4	1106
71	3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. <i>Nano Letters</i> , 2013 , 13, 72-8	11.5	588
70	Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. <i>Science</i> , 2015 , 347, 154-9	33.3	587
69	Coal as an abundant source of graphene quantum dots. <i>Nature Communications</i> , 2013 , 4, 2943	17.4	556
68	Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano, 2012, 6, 9110-7	16.7	488
67	A seamless three-dimensional carbon nanotube graphene hybrid material. <i>Nature Communications</i> , 2012 , 3, 1225	17.4	390
66	Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. <i>ACS Nano</i> , 2013 , 7, 6001-6	16.7	384
65	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	372
64	A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11757-64	11.5	344
63	Rational design of hybrid graphene films for high-performance transparent electrodes. <i>ACS Nano</i> , 2011 , 5, 6472-9	16.7	265
62	Growth of bilayer graphene on insulating substrates. ACS Nano, 2011 , 5, 8187-92	16.7	243
61	Direct growth of bilayer graphene on SiOl ubstrates by carbon diffusion through nickel. <i>ACS Nano</i> , 2011 , 5, 8241-7	16.7	231
60	Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. <i>Nature Materials</i> , 2018 , 17, 268-276	27	216
59	Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. <i>Nature Electronics</i> , 2019 , 2, 26-35	28.4	209
58	Terahertz and infrared spectroscopy of gated large-area graphene. <i>Nano Letters</i> , 2012 , 12, 3711-5	11.5	203
57	Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. <i>Advanced Functional Materials</i> , 2016 , 26, 2629-2639	15.6	188
56	Three-dimensional metal-graphene-nanotube multifunctional hybrid materials. ACS Nano, 2013, 7, 58-6	416.7	185

(2006-2018)

55	Gas-Permeable, Multifunctional On-Skin Electronics Based on Laser-Induced Porous Graphene and Sugar-Templated Elastomer Sponges. <i>Advanced Materials</i> , 2018 , 30, e1804327	24	177
54	Chemical vapor deposition of graphene single crystals. <i>Accounts of Chemical Research</i> , 2014 , 47, 1327-	3724.3	170
53	Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. <i>Advanced Materials</i> , 2013 , 25, 4592-7	24	158
52	High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. <i>Nano Research</i> , 2014 , 7, 1232-1240	10	157
51	Rebar graphene. <i>ACS Nano</i> , 2014 , 8, 5061-8	16.7	155
50	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. <i>Science Advances</i> , 2016 , 2, e1601014	14.3	152
49	Large-area Bernal-stacked bi-, tri-, and tetralayer graphene. ACS Nano, 2012, 6, 9790-6	16.7	147
48	Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. <i>Nature Communications</i> , 2012 , 3, 1101	17.4	146
47	Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for High-Performance Li-Ion Batteries. <i>Advanced Functional Materials</i> , 2014 , 24, 2044-2048	15.6	142
46	Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. <i>Nature Communications</i> , 2018 , 9, 1417	17.4	136
45	Towards hybrid superlattices in graphene. <i>Nature Communications</i> , 2011 , 2, 559	17.4	130
44	Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances. <i>ACS Nano</i> , 2013 , 7, 10380-6	16.7	109
43	Inorganic semiconducting materials for flexible and stretchable electronics. <i>Npj Flexible Electronics</i> , 2017 , 1,	10.7	107
42	Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E9455-E9464	11.5	104
41	Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. <i>Nano Research</i> , 2013 , 6, 703-711	10	92
40	Controlled modulation of electronic properties of graphene by self-assembled monolayers on SiO2 substrates. <i>ACS Nano</i> , 2011 , 5, 1535-40	16.7	92
39	Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics. <i>Advanced Functional Materials</i> , 2017 , 27, 1702589	15.6	85
38	Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2347		73

37	Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012 , 4, 131-6	9.5	72
36	Pyridine-functionalized mesoporous silica as an efficient adsorbent for the removal of acid dyestuffs. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1717		72
35	Large hexagonal bi- and trilayer graphene single crystals with varied interlayer rotations. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 1565-9	16.4	63
34	Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 205-213	11.5	60
33	Laser-Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human-Soft Actuators Interaction. <i>Advanced Materials</i> , 2020 , 32, e1908475	24	57
32	Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation. <i>Advanced Functional Materials</i> , 2016 , 26, 2909-2918	15.6	57
31	Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress. <i>Extreme Mechanics Letters</i> , 2017 , 11, 96-104	3.9	56
30	Pencil-paper on-skin electronics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 18292-18301	11.5	52
29	Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields. <i>Physical Review B</i> , 2012 , 85,	3.3	44
28	Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping. <i>Nature Communications</i> , 2020 , 11, 6325	17.4	41
27	Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. <i>Advanced Functional Materials</i> , 2017 , 27, 1604281	15.6	41
26	Three-Dimensional Multiscale, Multistable, and Geometrically Diverse Microstructures with Tunable Vibrational Dynamics Assembled by Compressive Buckling. <i>Advanced Functional Materials</i> , 2017 , 27, 160	0 5 5 1 4	39
25	Mechanically Assembled, Three-Dimensional Hierarchical Structures of Cellular Graphene with Programmed Geometries and Outstanding Electromechanical Properties. <i>ACS Nano</i> , 2018 , 12, 12456-12	24637	37
24	Three-Dimensional Objects Consisting of Hierarchically Assembled Nanofibers with Controlled Alignments for Regenerative Medicine. <i>Nano Letters</i> , 2019 , 19, 2059-2065	11.5	36
23	Chemical Makeup and Hydrophilic Behavior of Graphene Oxide Nanoribbons after Low-Temperature Fluorination. <i>ACS Nano</i> , 2015 , 9, 7009-18	16.7	34
22	Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2014 , 118, 25863-25868	3.8	32
21	Controlled ambipolar-to-unipolar conversion in graphene field-effect transistors through surface coating with poly(ethylene imine)/poly(ethylene glycol) films. <i>Small</i> , 2012 , 8, 59-62	11	31
20	Hexagonal graphene onion rings. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10755-62	16.4	28

(2016-2017)

19	Mechanically-Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses. Small, 2017 , 13, 1700151	11	25
18	Crystalline and micellar properties of amphiphilic biodegradable chitooligosaccharide-graft-poly(Etaprolactone) copolymers. <i>Carbohydrate Polymers</i> , 2006 , 64, 466-472	10.3	25
17	Large Hexagonal Bi- and Trilayer Graphene Single Crystals with Varied Interlayer Rotations. <i>Angewandte Chemie</i> , 2014 , 126, 1591-1595	3.6	24
16	Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 41505-41511	9.5	23
15	Rebar graphene from functionalized boron nitride nanotubes. ACS Nano, 2015, 9, 532-8	16.7	22
14	Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9001-9019	16.4	22
13	Fabrication and Deformation of 3D Multilayered Kirigami Microstructures. <i>Small</i> , 2018 , 14, e1703852	11	21
12	Outdoor-Useable, Wireless/Battery-Free Patch-Type Tissue Oximeter with Radiative Cooling. <i>Advanced Science</i> , 2021 , 8, 2004885	13.6	21
11	Effect of anchor and functional groups in functionalized graphene devices. Nano Research, 2013, 6, 138	-1/48	19
10	Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks. <i>Advanced Biology</i> , 2017 , 1, 1700068	3.5	12
9	Laser-induced graphene for bioelectronics and soft actuators. <i>Nano Research</i> , 2021 , 14, 1-18	10	12
8	Paper-based wearable electronics. <i>IScience</i> , 2021 , 24, 102736	6.1	11
7	Adsorption of atrazine by laser induced graphitic material: An efficient, scalable and green alternative for pollution abatement. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 104407	6.8	9
6	4D Printing Elastic Composites for Strain-Tailored Multistable Shape Morphing. <i>ACS Applied Materials & Materials </i>	9.5	9
5	An analytic model of two-level compressive buckling with applications in the assembly of free-standing 3D mesostructures. <i>Soft Matter</i> , 2018 , 14, 8828-8837	3.6	6
4	Bioinspired elastomer composites with programmed mechanical and electrical anisotropies <i>Nature Communications</i> , 2022 , 13, 524	17.4	5
3	Synthesis, Assembly, and Applications of Semiconductor Nanomembranes 2016 , 1-36		1
2	3D Assembly: Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials (Adv. Funct. Mater. 16/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 2586-2586	15.6	

Advances in Modeling Alzheimer Disease In Vitro. Advanced NanoBiomed Research, 2100097

О