Shun-ichiro Ogura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4633139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current status of photodynamic technology for urothelial cancer. Cancer Science, 2022, 113, 392-398.	1.7	18
2	Association of 5-aminolevulinic acid with intraoperative hypotension in malignant glioma surgery. Photodiagnosis and Photodynamic Therapy, 2022, 37, 102657.	1.3	6
3	Key transporters leading to specific protoporphyrin IX accumulation in cancer cell following administration of aminolevulinic acid in photodynamic therapy/diagnosis. International Journal of Clinical Oncology, 2021, 26, 26-33.	1.0	9
4	Enhanced lipid metabolism induces the sensitivity of dormant cancer cells to 5-aminolevulinic acid-based photodynamic therapy. Scientific Reports, 2021, 11, 7290.	1.6	13
5	Efficiency of aminolevulinic acid (ALA)-photodynamic therapy based on ALA uptake transporters in a cell density-dependent malignancy model. Journal of Photochemistry and Photobiology B: Biology, 2021, 218, 112191.	1.7	7
6	Sunitinib with photoirradiation-mediated reactive oxygen species generation induces apoptosis of renal cell carcinoma cells. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102427.	1.3	4
7	Predictors of therapeutic efficacy of 5-aminolevulinic acid-based photodynamic therapy in human prostate cancer. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102452.	1.3	5
8	Mitomycin C-induced cell cycle arrest enhances 5-aminolevulinic acid-based photodynamic therapy for bladder cancer. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101893.	1.3	15
9	Novel strategy to increase specificity of ALA-Induced PpIX accumulation through inhibition of transporters involved in ALA uptake. Photodiagnosis and Photodynamic Therapy, 2019, 27, 327-335.	1.3	12
10	Photoirradiation after aminolevulinic acid treatment suppresses cancer cell proliferation through the HO-1/p21 pathway. Photodiagnosis and Photodynamic Therapy, 2019, 28, 10-17.	1.3	12
11	Synthesis and crystal structures of phenylalanine ester-introduced palladium(II) and platinum(II) complexes and their cytotoxicities. Research on Chemical Intermediates, 2019, 45, 3-12.	1.3	4
12	5-Aminolevulinic acid regulates the immune response in LPS-stimulated RAW 264.7 macrophages. BMC Immunology, 2018, 19, 41.	0.9	24
13	Enhancement of 5-aminolevulinic acid-based fluorescence detection of side population-defined glioma stem cells by iron chelation. Scientific Reports, 2017, 7, 42070.	1.6	37
14	Improving contrast enhancement in magnetic resonance imaging using 5-aminolevulinic acid-induced protoporphyrin IX for high-grade gliomas. Oncology Letters, 2017, 13, 1269-1275.	0.8	5
15	Coating lanthanide nanoparticles with carbohydrate ligands elicits affinity for HeLa and RAW264.7 cells, enhancing their photodamaging effect. Bioorganic and Medicinal Chemistry, 2017, 25, 743-749.	1.4	9
16	Development of a novel Schiff base derivative for enhancing the anticancer potential of 5-aminolevulinic acid-based photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2017, 20, 182-188.	1.3	2
17	Photodynamic Detection of Peritoneal Metastases Using 5-Aminolevulinic Acid (ALA). Cancers, 2017, 9, 23.	1.7	12
18	Dormant cancer cells accumulate high protoporphyrin IX levels and are sensitive to 5-aminolevulinic acid-based photodynamic therapy. Scientific Reports, 2016, 6, 36478.	1.6	46

#	Article	IF	CITATIONS
19	Plasma protoporphyrin IX following administration of 5-aminolevulinic acid as a potential tumor marker. Molecular and Clinical Oncology, 2015, 3, 797-801.	0.4	14
20	5-Aminolevulinic acid-induced protoporphyrin IX with multi-dose ionizing irradiation enhances host antitumor response and strongly inhibits tumor growth in experimental glioma in vivo. Molecular Medicine Reports, 2015, 11, 1813-1819.	1.1	32
21	The Effect of Coatings on the Affinity of Lanthanide Nanoparticles to MKN45 and HeLa Cancer Cells and Improvement in Photodynamic Therapy Efficiency. International Journal of Molecular Sciences, 2015, 16, 22415-22424.	1.8	14
22	The Effect of 5-Aminolevulinic Acid on Cytochrome P450-Mediated Prodrug Activation. PLoS ONE, 2015, 10, e0131793.	1.1	20
23	Oxygen Availability for Porphyrin Biosynthesis Enzymes Determines the Production of Protoporphyrin IX (PpIX) during Hypoxia. PLoS ONE, 2015, 10, e0146026.	1.1	15
24	Effects of plasma membrane ABCB6 on 5-aminolevulinic acid (ALA)-induced porphyrin accumulation in vitro: Tumor cell response to hypoxia. Photodiagnosis and Photodynamic Therapy, 2015, 12, 45-51.	1.3	34
25	Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid. Applied Surface Science, 2015, 348, 54-59.	3.1	24
26	5-aminolevulinic acid enhances cell death under thermal stress in certain cancer cell lines. Bioscience, Biotechnology and Biochemistry, 2015, 79, 422-431.	0.6	7
27	The Effect of Iron Ion on the Specificity of Photodynamic Therapy with 5-Aminolevulinic Acid. PLoS ONE, 2015, 10, e0122351.	1.1	28
28	Cancer Therapy and Diagnosis Using Photosensitizers. Journal of the Japan Society of Colour Material, 2015, 88, 416-418.	0.0	0
29	Cytoreductive Surgery Under Aminolevulinic Acid-Mediated Photodynamic Diagnosis Plus Hyperthermic Intraperitoneal Chemotherapy in Patients with Peritoneal Carcinomatosis from Ovarian Cancer and Primary Peritoneal Carcinoma: Results of a Phase I Trial. Annals of Surgical Oncology, 2014, 21, 4256-4262.	0.7	37
30	Photodynamic detection and management of intraperitoneal spreading of primary peritoneal papillary serous carcinoma in a man: report of a case. Surgery Today, 2014, 44, 373-377.	0.7	16
31	The effects of the heme precursor 5â€aminolevulinic acid (ALA) on REVâ€ERBα activation. FEBS Open Bio, 2014, 4, 347-352.	1.0	8
32	The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis. Oncology Reports, 2014, 31, 1282-1286.	1.2	24
33	Access to a novel near-infrared photodynamic therapy through the combined use of 5-aminolevulinic acid and lanthanide nanoparticles. Photodiagnosis and Photodynamic Therapy, 2013, 10, 607-614.	1.3	18
34	Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer. Photodiagnosis and Photodynamic Therapy, 2013, 10, 288-295.	1.3	82
35	Improvement of aminolevulinic acid (ALA)-mediated photodynamic diagnosis using n-propyl gallate. Photodiagnosis and Photodynamic Therapy, 2013, 10, 28-32.	1.3	8
36	Sugar-attached upconversion lanthanide nanoparticles: A novel tool for high-throughput lectin assay. Bioorganic and Medicinal Chemistry, 2013, 21, 2832-2842.	1.4	9

#	Article	IF	CITATIONS
37	Porphyrins as urinary biomarkers for bladder cancer after 5-aminolevulinic acid (ALA) administration: The potential of photodynamic screening for tumors. Photodiagnosis and Photodynamic Therapy, 2013, 10, 484-489.	1.3	26
38	Improvement of Tumor Localization of Photosensitizers for Photodynamic Therapy and Its Application for Tumor Diagnosis. Current Topics in Medicinal Chemistry, 2012, 12, 176-184.	1.0	11
39	Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCC2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro. Photodiagnosis and Photodynamic Therapy, 2012, 9, 204-214.	1.3	96
40	Porphyrins in urine after administration of 5-aminolevulinic acid as a potential tumor marker. Photodiagnosis and Photodynamic Therapy, 2011, 8, 328-331.	1.3	17
41	The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver. BMC Research Notes, 2011, 4, 66.	0.6	67
42	Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. International Immunopharmacology, 2011, 11, 358-365.	1.7	207
43	Current states and future views in photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011, 12, 46-67.	5.6	457
44	Proneurotensin/neuromedin N secreted from small cell lung carcinoma cell lines as a potential tumor marker. Proteomics - Clinical Applications, 2008, 2, 1620-1627.	0.8	12
45	Nrf2-dependent induction of human ABC transporter ABCG2 and heme oxygenase-1 in HepG2 cells by photoactivation of porphyrins: biochemical implications for cancer cell response to photodynamic therapy. Journal of Experimental Therapeutics and Oncology, 2008, 7, 153-67.	0.5	48
46	Singlet Oxygen Generation and Photocytotoxicity against Tumor Cell by Two-Photon Absorption. Molecular Crystals and Liquid Crystals, 2007, 471, 61-67.	0.4	5
47	Development of phthalocyanines for photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1116-1124.	0.4	77
48	Cellular uptake and photocytotoxicity of glycoconjugated chlorins in HeLa cells. Journal of Photochemistry and Photobiology B: Biology, 2005, 78, 7-15.	1.7	46
49	Localization of poly-l-lysine—photosensitizer conjugate in nucleus. Journal of Controlled Release, 2005, 103, 1-6.	4.8	28
50	Cellular localization and photodynamic effect of chlorin e6-monoclonal antibody conjugate. Journal of Porphyrins and Phthalocyanines, 2005, 09, 138-141.	0.4	4
51	Cellular Uptake and Photocytotoxicity of Glycoconjugated Porphyrins in Hela Cells. [¶] . Photochemistry and Photobiology, 2004, 80, 301-308.	1.3	1
52	Preparation of a water-soluble fluorinated zinc phthalocyanine and its effect for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2000, 59, 20-25.	1.7	109
53	Photodynamic Efficiency of Protoporphyrin IX: Comparison of Endogenous Protoporphyrin IX Induced by 5â€Aminolevulinic Acid and Exogenous Porphyrin IX. Photochemistry and Photobiology, 1997, 66, 842-846.	1.3	41