
Erin L Hestir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4632988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using ECOSTRESS to Observe and Model Diurnal Variability in Water Temperature Conditions in the San Francisco Estuary. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	6.3	4
2	Detection of Palmer amaranth (<i>Amaranthus palmeri</i>) and large crabgrass (<i>Digitaria) Tj ETQq0 0 0 rgB presence. Weed Science, 2022, 70, 198-212.</i>	/Overlock 1.5	10 Tf 50 707 3
3	Decline in Thermal Habitat Conditions for the Endangered Delta Smelt as Seen from Landsat Satellites (1985–2019). Environmental Science & Technology, 2022, 56, 185-193.	10.0	5
4	Genus-Level Mapping of Invasive Floating Aquatic Vegetation Using Sentinel-2 Satellite Remote Sensing. Remote Sensing, 2022, 14, 3013.	4.0	9
5	Performance and Feasibility of Drone-Mounted Imaging Spectroscopy for Invasive Aquatic Vegetation Detection. Remote Sensing, 2021, 13, 582.	4.0	13
6	Monitoring Turbidity in San Francisco Estuary and Sacramento–San Joaquin Delta Using Satellite Remote Sensing. Journal of the American Water Resources Association, 2021, 57, 737-751.	2.4	7
7	Marine Life 2030: Forecasting Changes to Ocean Biodiversity to Inform Decision-Making: A Critical Role for the Marine Biodiversity Observation Network (MBON). Marine Technology Society Journal, 2021, 55, 84-85.	0.4	3
8	Living up to the Hype of Hyperspectral Aquatic Remote Sensing: Science, Resources and Outlook. Frontiers in Environmental Science, 2021, 9, .	3.3	39
9	Assessing Fish Habitat and the Effects of an Emergency Drought Barrier on Estuarine Turbidity Using Satellite Remote Sensing. Journal of the American Water Resources Association, 2021, 57, 752-770.	2.4	4
10	Phenology affects differentiation of crop and weed species using hyperspectral remote sensing. Weed Technology, 2020, 34, 897-908.	0.9	7
11	Remote Sensing of Geodiversity as a Link to Biodiversity. , 2020, , 225-253.		4
12	Remote Detection of Invasive Alien Species. , 2020, , 267-307.		17
13	A numerical study of sediment dynamics over Sandy Point dredge pit, west flank of the Mississippi River, during a cold front event. Continental Shelf Research, 2019, 183, 38-50.	1.8	21
14	Variability in Trends and Indicators of CO 2 Exchange Across Arctic Wetlands. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1248-1264.	3.0	14
15	Large crabgrass (Digitaria sanguinalis) and Palmer amaranth (Amaranthus palmeri) intraspecific and interspecific interference in soybean. Weed Science, 2019, 67, 649-656.	1.5	14
16	Interspecific and intraspecific interference of Palmer amaranth (<i>Amaranthus palmeri</i>) and large crabgrass (<i>Digitaria sanguinalis</i>) in sweetpotato. Weed Science, 2019, 67, 426-432.	1.5	19
17	Using Hyperspectral UAS Imagery to Monitor Invasive Plant Phenology. , 2019, , .		1
18	Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecological Applications, 2018, 28, 749-760.	3.8	116

ERIN L HESTIR

#	Article	lF	CITATIONS
19	Evaluation of Atmospheric Correction Algorithms for Landsat-8 OLI and MODIS-Aqua to Study Sediment Dynamics in the Northern Gulf of Mexico. Advances in Remote Sensing, 2018, 07, 101-124.	0.9	3
20	Optical response associated with changing summer biogeochemical conditions in a turbid lake. Limnologica, 2017, 63, 83-96.	1.5	1
21	Remote Sensing for Biodiversity. , 2017, , 187-210.		23
22	A spaceborne visible-NIR hyperspectral imager for coastal phenology. Proceedings of SPIE, 2016, , .	0.8	1
23	Novel Species Interactions in a Highly Modified Estuary: Association of Largemouth Bass with Brazilian Waterweed <i>Egeria densa</i> . Transactions of the American Fisheries Society, 2016, 145, 249-263.	1.4	30
24	Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sensing of Environment, 2016, 185, 108-118.	11.0	82
25	Measuring landscapeâ€scale spread and persistence of an invaded submerged plant community from airborne remote sensing. Ecological Applications, 2016, 26, 1733-1744.	3.8	22
26	Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 777-795.	3.0	47
27	The Effect of Submerged Aquatic Vegetation Expansion on a Declining Turbidity Trend in the Sacramento-San Joaquin River Delta. Estuaries and Coasts, 2016, 39, 1100-1112.	2.2	48
28	Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sensing of Environment, 2015, 167, 181-195.	11.0	191
29	A Wavelet-Enhanced Inversion Method for Water Quality Retrieval From High Spectral Resolution Data for Complex Waters. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 869-882.	6.3	5
30	The relationship between dissolved organic matter absorption and dissolved organic carbon in reservoirs along a temperate to tropical gradient. Remote Sensing of Environment, 2015, 156, 395-402.	11.0	54
31	A Wavelet Approach for Estimating Chlorophyll-A From Inland Waters With Reflectance Spectroscopy. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 89-93.	3.1	14
32	A step decrease in sediment concentration in a highly modified tidal river delta following the 1983 El Niño floods. Marine Geology, 2013, 345, 304-313.	2.1	30
33	Inland water quality monitoring in Australia. , 2013, , .		0
34	Classification Trees for Aquatic Vegetation Community Prediction From Imaging Spectroscopy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1572-1584.	4.9	23
35	The case for a global inland water quality product. , 2012, , .		12
36	Image spectroscopy and stable isotopes elucidate functional dissimilarity between native and nonnative plant species in the aquatic environment. New Phytologist, 2012, 193, 683-695.	7.3	65

ERIN L HESTIR

#	Article	IF	CITATIONS
37	Using LiDAR Data Analysis to Estimate Changes in Insolation Under Largeâ€5cale Riparian Deforestation ¹ . Journal of the American Water Resources Association, 2012, 48, 939-948.	2.4	15
38	Plant community dynamics relative to the changing distribution of a highly invasive species, Eichhornia crassipes: a remote sensing perspective. Biological Invasions, 2012, 14, 717-733.	2.4	33
39	Least cost distance analysis for spatial interpolation. Computers and Geosciences, 2011, 37, 272-276.	4.2	26
40	Use of Hyperspectral Remote Sensing to Evaluate Efficacy of Aquatic Plant Management. Invasive Plant Science and Management, 2009, 2, 216-229.	1.1	33
41	Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 2008, 112, 4034-4047.	11.0	272