Christine A Iacobuzio-Donahue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4632355/publications.pdf

Version: 2024-02-01

319 papers 60,309 citations

105 h-index 236 g-index

338 all docs 338 docs citations

338 times ranked 59323 citing authors

#	Article	IF	CITATIONS
1	Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science, 2008, 321, 1801-1806.	12.6	3,755
2	Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic Cancer. Science, 2009, 324, 1457-1461.	12.6	2,730
3	Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531, 47-52.	27.8	2,700
4	Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010, 467, 1114-1117.	27.8	2,184
5	Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 2015, 518, 495-501.	27.8	2,132
6	Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development. Cell, 2011, 144, 27-40.	28.9	2,020
7	A draft map of the human proteome. Nature, 2014, 509, 575-581.	27.8	1,948
8	Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475, 106-109.	27.8	1,831
9	Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491, 399-405.	27.8	1,741
10	Stromal Elements Act to Restrain, Rather Than Support, Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2014, 25, 735-747.	16.8	1,616
11	Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell, 2015, 160, 324-338.	28.9	1,584
12	Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nature Genetics, 2015, 47, 1168-1178.	21.4	1,491
13	The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 2010, 467, 1109-1113.	27.8	1,200
14	<i>DPC4</i> Gene Status of the Primary Carcinoma Correlates With Patterns of Failure in Patients With Pancreatic Cancer. Journal of Clinical Oncology, 2009, 27, 1806-1813.	1.6	976
15	Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 2017, 551, 512-516.	27.8	854
16	Exomic Sequencing Identifies <i>PALB2</i> as a Pancreatic Cancer Susceptibility Gene. Science, 2009, 324, 217-217.	12.6	713
17	Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discovery, 2018, 8, 1112-1129.	9.4	676
18	Blockade of Hedgehog Signaling Inhibits Pancreatic Cancer Invasion and Metastases: A New Paradigm for Combination Therapy in Solid Cancers. Cancer Research, 2007, 67, 2187-2196.	0.9	647

#	Article	IF	CITATIONS
19	The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell, 2018, 34, 427-438.e6.	16.8	633
20	Notch mediates TGFî±-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell, 2003, 3, 565-576.	16.8	627
21	Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell, 2020, 181, 1643-1660.e17.	28.9	554
22	TGF-Î ² Tumor Suppression through a Lethal EMT. Cell, 2016, 164, 1015-1030.	28.9	488
23	Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature, 2010, 464, 610-614.	27.8	470
24	Small Cell and Large Cell Neuroendocrine Carcinomas of the Pancreas are Genetically Similar and Distinct From Well-differentiated Pancreatic Neuroendocrine Tumors. American Journal of Surgical Pathology, 2012, 36, 173-184.	3.7	468
25	Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nature Medicine, 2016, 22, 497-505.	30.7	456
26	Exploration of Global Gene Expression Patterns in Pancreatic Adenocarcinoma Using cDNA Microarrays. American Journal of Pathology, 2003, 162, 1151-1162.	3.8	450
27	Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Reports, 2016, 17, 2445-2459.	6.4	450
28	Phase 2 multiâ€institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer, 2015, 121, 1128-1137.	4.1	447
29	Pathologically and Biologically Distinct Types of Epithelium in Intraductal Papillary Mucinous Neoplasms. American Journal of Surgical Pathology, 2004, 28, 839-848.	3.7	440
30	Prevalence of the Alternative Lengthening of Telomeres Telomere Maintenance Mechanism in Human Cancer Subtypes. American Journal of Pathology, 2011, 179, 1608-1615.	3.8	423
31	Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clinical Cancer Research, 2001, 7, 3862-8.	7.0	416
32	An <i>In vivo</i> Platform for Translational Drug Development in Pancreatic Cancer. Clinical Cancer Research, 2006, 12, 4652-4661.	7.0	407
33	Prognostic Significance of Tumorigenic Cells With Mesenchymal Features in Pancreatic Adenocarcinoma. Journal of the National Cancer Institute, 2010, 102, 340-351.	6.3	392
34	Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget, 2011, 2, 627-637.	1.8	383
35	Peritumoral Fibroblast SPARC Expression and Patient Outcome With Resectable Pancreatic Adenocarcinoma. Journal of Clinical Oncology, 2007, 25, 319-325.	1.6	372
36	Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies. Cell, 2012, 148, 362-375.	28.9	369

#	Article	IF	CITATIONS
37	Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nature Genetics, 2017, 49, 367-376.	21.4	365
38	Multicomponent Analysis of the Pancreatic Adenocarcinoma Progression Model Using a Pancreatic Intraepithelial Neoplasia Tissue Microarray. Modern Pathology, 2003, 16, 902-912.	5.5	363
39	The mutational landscape of normal human endometrial epithelium. Nature, 2020, 580, 640-646.	27.8	338
40	Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Research, 2003, 63, 8614-22.	0.9	336
41	<i>SMAD4</i> Gene Mutations Are Associated with Poor Prognosis in Pancreatic Cancer. Clinical Cancer Research, 2009, 15, 4674-4679.	7.0	335
42	The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell, 2020, 181, 236-249.	28.9	334
43	Pancreatic cancer biology and genetics from an evolutionary perspective. Nature Reviews Cancer, 2016, 16, 553-565.	28.4	316
44	Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nature Genetics, 2017, 49, 358-366.	21.4	316
45	Loss of Imprinting of <i>Igf2</i> Alters Intestinal Maturation and Tumorigenesis in Mice. Science, 2005, 307, 1976-1978.	12.6	312
46	Nuclear Î ² -Catenin Expression Distinguishes Deep Fibromatosis From Other Benign and Malignant Fibroblastic and Myofibroblastic Lesions. American Journal of Surgical Pathology, 2005, 29, 653-659.	3.7	302
47	The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature, 2012, 486, 266-270.	27.8	297
48	Telomere Length Abnormalities Occur Early in the Initiation of Epithelial Carcinogenesis. Clinical Cancer Research, 2004, 10, 3317-3326.	7.0	292
49	Intraductal Papillary Mucinous Neoplasms of the Pancreas: An Increasingly Recognized Clinicopathologic Entity. Annals of Surgery, 2001, 234, 313-322.	4.2	286
50	Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.	9.4	282
51	Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clinical Cancer Research, 2018, 24, 1326-1336.	7. O	281
52	Discovery of Novel Tumor Markers of Pancreatic Cancer using Global Gene Expression Technology. American Journal of Pathology, 2002, 160, 1239-1249.	3.8	271
53	Pancreatic cancer. Current Problems in Cancer, 2002, 26, 176-275.	2.0	268
54	Somatic mutations in the chromatin remodeling gene <i>ARID1A</i> occur in several tumor types. Human Mutation, 2012, 33, 100-103.	2.5	263

#	Article	IF	Citations
55	STK11/LKB1 Peutz-Jeghers Gene Inactivation in Intraductal Papillary-Mucinous Neoplasms of the Pancreas. American Journal of Pathology, 2001, 159, 2017-2022.	3.8	251
56	Long Interspersed Element-1 Protein Expression Is a Hallmark of Many Human Cancers. American Journal of Pathology, 2014, 184, 1280-1286.	3.8	250
57	Dpc-4 Protein Is Expressed in Virtually All Human Intraductal Papillary Mucinous Neoplasms of the Pancreas. American Journal of Pathology, 2000, 157, 755-761.	3.8	245
58	Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Research, 2003, 63, 4158-66.	0.9	238
59	Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1692-1697.	7.1	237
60	Risk of colorectal cancer in juvenile polyposis. Gut, 2007, 56, 965-967.	12.1	228
61	Minimal functional driver gene heterogeneity among untreated metastases. Science, 2018, 361, 1033-1037.	12.6	223
62	Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 2022, 185, 563-575.e11.	28.9	223
63	Clinical Significance of the Genetic Landscape of Pancreatic Cancer and Implications for Identification of Potential Long-term Survivors. Clinical Cancer Research, 2012, 18, 6339-6347.	7.0	220
64	Histopathologic Basis for the Favorable Survival after Resection of Intraductal Papillary Mucinous Neoplasm-Associated Invasive Adenocarcinoma of the Pancreas. Annals of Surgery, 2010, 251, 470-476.	4.2	210
65	Methylation of <i>TFPI2 </i> in Stool DNA: A Potential Novel Biomarker for the Detection of Colorectal Cancer. Cancer Research, 2009, 69, 4691-4699.	0.9	204
66	A Six-Gene Signature Predicts Survival of Patients with Localized Pancreatic Ductal Adenocarcinoma. PLoS Medicine, 2010, 7, e1000307.	8.4	202
67	Gene Expression Profiling Identifies Genes Associated with Invasive Intraductal Papillary Mucinous Neoplasms of the Pancreas. American Journal of Pathology, 2004, 164, 903-914.	3.8	190
68	The Pathology and Genetics of Metastatic Pancreatic Cancer. Archives of Pathology and Laboratory Medicine, 2009, 133, 413-422.	2.5	186
69	Exploring the Host Desmoplastic Response to Pancreatic Carcinoma. American Journal of Pathology, 2002, 160, 91-99.	3.8	182
70	The mutational landscape of human somatic and germline cells. Nature, 2021, 597, 381-386.	27.8	180
71	Results of Pancreaticoduodenectomy for Lymphoplasmacytic Sclerosing Pancreatitis. Annals of Surgery, 2003, 237, 853-859.	4.2	178
72	Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science, 2018, 360, .	12.6	177

#	Article	IF	CITATIONS
73	Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3089-3094.	7.1	175
74	Hypermutation In Pancreatic Cancer. Gastroenterology, 2017, 152, 68-74.e2.	1.3	174
75	Prospective Evaluation of Germline Alterations in Patients With Exocrine Pancreatic Neoplasms. Journal of the National Cancer Institute, 2018, 110, 1067-1074.	6.3	170
76	Evolution and dynamics of pancreatic cancer progression. Oncogene, 2013, 32, 5253-5260.	5.9	167
77	Real-Time Genomic Profiling of Pancreatic Ductal Adenocarcinoma: Potential Actionability and Correlation with Clinical Phenotype. Clinical Cancer Research, 2017, 23, 6094-6100.	7.0	161
78	Sessile Serrated Adenomas With Low- and High-Grade Dysplasia and Early Carcinomas. American Journal of Clinical Pathology, 2006, 126, 564-571.	0.7	158
79	Dpc4 Protein in Mucinous Cystic Neoplasms of the Pancreas. American Journal of Surgical Pathology, 2000, 24, 1544-1548.	3.7	155
80	Unifying cancer and normal RNA sequencing data from different sources. Scientific Data, 2018, 5, 180061.	5. 3	152
81	Colchicine Toxicity. American Journal of Surgical Pathology, 2001, 25, 1067-1073.	3.7	150
82	Claudin 4 Protein Expression in Primary and Metastatic Pancreatic Cancer. American Journal of Clinical Pathology, 2004, 121, 226-230.	0.7	149
83	Epigenetic Changes in Cancer. Annual Review of Pathology: Mechanisms of Disease, 2009, 4, 229-249.	22.4	149
84	Molecular progression of promoter methylation in intraductal papillary mucinous neoplasms (IPMN) of the pancreas. Carcinogenesis, 2003, 24, 193-198.	2.8	146
85	Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science, 2020, 369, 276-282.	12.6	146
86	Absence of E-Cadherin Expression Distinguishes Noncohesive from Cohesive Pancreatic Cancer. Clinical Cancer Research, 2008, 14, 412-418.	7.0	145
87	Epigenetic inactivation of TFPI-2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma. Oncogene, 2005, 24, 850-858.	5. 9	144
88	Immunohistochemical and Genetic Evaluation of Deoxycytidine Kinase in Pancreatic Cancer: Relationship to Molecular Mechanisms of Gemcitabine Resistance and Survival. Clinical Cancer Research, 2006, 12, 2492-2497.	7.0	141
89	An analysis of genetic heterogeneity in untreated cancers. Nature Reviews Cancer, 2019, 19, 639-650.	28.4	139
90	Genomic and Epigenomic Integration Identifies a Prognostic Signature in Colon Cancer. Clinical Cancer Research, 2011, 17, 1535-1545.	7.0	136

#	Article	IF	Citations
91	Almost All Infiltrating Colloid Carcinomas of the Pancreas and Periampullary Region Arise From In Situ Papillary Neoplasms. American Journal of Surgical Pathology, 2002, 26, 56-63.	3.7	135
92	Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection. Clinical Cancer Research, 2020, 26, 3239-3247.	7.0	135
93	Immortalizing the complexity of cancer metastasis: Genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy. Cancer Biology and Therapy, 2005, 4, 548-554.	3.4	132
94	Circulating Tumor Cell Phenotype Predicts Recurrence and Survival in Pancreatic Adenocarcinoma. Annals of Surgery, 2016, 264, 1073-1081.	4.2	131
95	Genetic evolution of pancreatic cancer: lessons learnt from the pancreatic cancer genome sequencing project. Gut, 2012, 61, 1085-1094.	12.1	130
96	Novel Methylation Biomarker Panel for the Early Detection of Pancreatic Cancer. Clinical Cancer Research, 2013, 19, 6544-6555.	7.0	129
97	Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nature Medicine, 2015, 21, 1060-1064.	30.7	127
98	Genetic Mutations Associated with Cigarette Smoking in Pancreatic Cancer. Cancer Research, 2009, 69, 3681-3688.	0.9	126
99	Immunohistochemical Validation of a Novel Epithelial and a Novel Stromal Marker of Pancreatic Ductal Adenocarcinoma Identified by Global Expression Microarrays. American Journal of Clinical Pathology, 2002, 118, 52-59.	0.7	124
100	Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology, 2002, 123, 365-372.	1.3	124
101	AGR2 Is a Novel Surface Antigen That Promotes the Dissemination of Pancreatic Cancer Cells through Regulation of Cathepsins B and D. Cancer Research, 2011, 71, 7091-7102.	0.9	124
102	A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nature Cancer, 2020, 1, 59-74.	13.2	124
103	Genetic Basis of Pancreas Cancer Development and Progression: Insights from Whole-Exome and Whole-Genome Sequencing. Clinical Cancer Research, 2012, 18, 4257-4265.	7.0	122
104	Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Research, 2015, 25, 1536-1545.	5.5	121
105	Copy number alterations in pancreatic cancer identify recurrent <i>PAK4</i> amplification. Cancer Biology and Therapy, 2008, 7, 1793-1802.	3.4	120
106	Reconstructing metastatic seeding patterns of human cancers. Nature Communications, 2017, 8, 14114.	12.8	118
107	<i>EGFR</i> and <i>MET</i> Amplifications Determine Response to HER2 Inhibition in <i>ERBB2</i> -Amplified Esophagogastric Cancer. Cancer Discovery, 2019, 9, 199-209.	9.4	115
108	A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Research, 2015, 75, 4272-4282.	0.9	113

#	Article	IF	CITATIONS
109	Molecular pathology of pancreatic cancer. Cancer Journal (Sudbury, Mass), 2001, 7, 251-8.	2.0	110
110	p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene, 2016, 35, 4282-4288.	5.9	108
111	Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models: Potential contributors to IBD-associated diarrhea. Inflammatory Bowel Diseases, 2009, 15, 261-274.	1.9	107
112	Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clinical Epigenetics, 2019, 11, 59.	4.1	106
113	Cytomegaloviral enterocolitis. Diseases of the Colon and Rectum, 1999, 42, 24-30.	1.3	102
114	The pancreatic cancer genome revisited. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 469-481.	17.8	100
115	Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Research, 2003, 63, 994-9.	0.9	100
116	Metastatic progression is associated with dynamic changes in the local microenvironment. Nature Communications, 2016, 7, 12819.	12.8	99
117	Enhanced sensitivity to IGF-II signaling links loss of imprinting of <i>IGF2 </i> to increased cell proliferation and tumor risk. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20926-20931.	7.1	97
118	Beta-catenin Nuclear Labeling is a Common Feature of Sessile Serrated Adenomas and Correlates With Early Neoplastic Progression After BRAF Activation. American Journal of Surgical Pathology, 2009, 33, 1823-1832.	3.7	97
119	HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Modern Pathology, 2009, 22, 43-49.	5.5	96
120	Precancerous neoplastic cells can move through the pancreatic ductal system. Nature, 2018, 561, 201-205.	27.8	96
121	HMGA1 Induces Intestinal Polyposis in Transgenic Mice and Drives Tumor Progression and Stem Cell Properties in Colon Cancer Cells. PLoS ONE, 2012, 7, e30034.	2.5	93
122	The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Research, 2002, 62, 5351-7.	0.9	91
123	Loss of E-cadherin expression and outcome among patients with resectable pancreatic adenocarcinomas. Modern Pathology, 2011, 24, 1237-1247.	5.5	90
124	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology, 2021, 160, 362-377.e13.	1.3	90
125	Missense Mutations of MADH4. Clinical Cancer Research, 2004, 10, 1597-1604.	7.0	89
126	Coordinated Epidermal Growth Factor Receptor Pathway Gene Overexpression Predicts Epidermal Growth Factor Receptor Inhibitor Sensitivity in Pancreatic Cancer. Cancer Research, 2008, 68, 2841-2849.	0.9	89

#	Article	IF	CITATIONS
127	Semaphorin 3D autocrine signaling mediates the metastatic role of annexin A2 in pancreatic cancer. Science Signaling, 2015, 8, ra77.	3.6	89
128	Disruption of p16 and Activation of Kras in Pancreas Increase Ductal Adenocarcinoma Formation and Metastasis in vivo. Oncotarget, 2011, 2, 862-873.	1.8	89
129	Efficacy and Safety of Curcumin in Treatment of Intestinal Adenomas in Patients With Familial Adenomatous Polyposis. Gastroenterology, 2018, 155, 668-673.	1.3	87
130	Processed pseudogenes acquired somatically during cancer development. Nature Communications, 2014, 5, 3644.	12.8	86
131	GATA6 Activates Wnt Signaling in Pancreatic Cancer by Negatively Regulating the Wnt Antagonist Dickkopf-1. PLoS ONE, 2011, 6, e22129.	2.5	83
132	The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes. Modern Pathology, 2016, 29, 1058-1069.	5 . 5	82
133	Claudin 4 Protein Expression in Primary and Metastatic Pancreatic Cancer Support for Use as a Therapeutic Target. American Journal of Clinical Pathology, 2004, 121, 226-230.	0.7	80
134	Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature, 2022, 606, 389-395.	27.8	80
135	Identifying Allelic Loss and Homozygous Deletions in Pancreatic Cancer without Matched Normals Using High-Density Single-Nucleotide Polymorphism Arrays. Cancer Research, 2006, 66, 7920-7928.	0.9	78
136	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Reports, 2020, 31, 107625.	6.4	78
137	Integrin α2 Mediates Selective Metastasis to the Liver. Cancer Research, 2009, 69, 7320-7328.	0.9	75
138	HMGA1 correlates with advanced tumor grade and decreased survival in pancreatic ductal adenocarcinoma. Modern Pathology, 2010, 23, 98-104.	5.5	75
139	Resection of borderline resectable pancreatic cancer after neoadjuvant chemoradiation does not depend on improved radiographic appearance of tumor–vessel relationships. Journal of Radiation Oncology, 2013, 2, 413-425.	0.7	74
140	Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression. Cancer Biology and Therapy, 2004, 3, 1254-1261.	3.4	73
141	Homozygous deletion of the MTAP gene in invasive adenocarcinoma of the pancreas and in periampullary cancer: A potential new target for therapy. Cancer Biology and Therapy, 2005, 4, 90-93.	3.4	71
142	The Evolutionary Origins of Recurrent Pancreatic Cancer. Cancer Discovery, 2020, 10, 792-805.	9.4	71
143	Artificial Intelligence and Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 251-279.	1.1	71
144	Molecular pathways in pancreatic carcinogenesis. Journal of Surgical Oncology, 2013, 107, 8-14.	1.7	70

#	Article	IF	Citations
145	Large-Scale Allelotype of Pancreaticobiliary Carcinoma Provides Quantitative Estimates of Genome-Wide Allelic Loss. Cancer Research, 2004, 64, 871-875.	0.9	68
146	Transcriptional Mechanisms of Resistance to Anti–PD-1 Therapy. Clinical Cancer Research, 2017, 23, 3168-3180.	7.0	67
147	Multiomic Analysis of Lung Tumors Defines Pathways Activated in Neuroendocrine Transformation. Cancer Discovery, 2021, 11, 3028-3047.	9.4	66
148	MAP2K4/MKK4 Expression in Pancreatic Cancer. Clinical Cancer Research, 2004, 10, 8516-8520.	7.0	65
149	Frequent genomic copy number gain and overexpression of GATA-6 in pancreatic carcinoma. Cancer Biology and Therapy, 2008, 7, 1593-1601.	3.4	65
150	Integrated preclinical and clinical development of mTOR inhibitors in pancreatic cancer. British Journal of Cancer, 2010, 103, 649-655.	6.4	65
151	Distinct pathways of pathogenesis of intraductal oncocytic papillary neoplasms and intraductal papillary mucinous neoplasms of the pancreas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 469, 523-532.	2.8	65
152	Cell division rates decrease with age, providing a potential explanation for the age-dependent deceleration in cancer incidence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20482-20488.	7.1	63
153	Clinicopathologic and Genetic Characterization of Traditional Serrated Adenomas of the Colon. American Journal of Clinical Pathology, 2012, 138, 356-366.	0.7	61
154	Genetically Defined Subsets of Human Pancreatic Cancer Show Unique <i>In Vitro</i> Chemosensitivity. Clinical Cancer Research, 2012, 18, 6519-6530.	7.0	60
155	ID1 Mediates Escape from TGFÎ ² Tumor Suppression in Pancreatic Cancer. Cancer Discovery, 2020, 10, 142-157.	9.4	59
156	Increased Cyclooxygenase-2 Expression in Duodenal Compared with Colonic Tissues in Familial Adenomatous Polyposis and Relationship to the \hat{a} 765G \hat{a} C COX-2 Polymorphism. Clinical Cancer Research, 2005, 11, 4090-4096.	7.0	58
157	Occurrence of Colorectal Adenomas in Younger Adults: An Epidemiologic Necropsy Study. Clinical Gastroenterology and Hepatology, 2008, 6, 1011-1015.	4.4	58
158	DNA methylation biomarker candidates for early detection of colon cancer. Tumor Biology, 2012, 33, 363-372.	1.8	57
159	Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clinical and Experimental Metastasis, 2007, 23, 357-365.	3.3	56
160	High Cancer-Specific Expression of Mesothelin (MSLN) Is Attributable to an Upstream Enhancer Containing a Transcription Enhancer Factor–Dependent MCAT Motif. Cancer Research, 2007, 67, 9055-9065.	0.9	55
161	Cancer biology as revealed by the research autopsy. Nature Reviews Cancer, 2019, 19, 686-697.	28.4	54
162	Inflammatory Leptomeningeal Cytokines Mediate COVID-19 Neurologic Symptoms in Cancer Patients. Cancer Cell, 2021, 39, 276-283.e3.	16.8	54

#	Article	IF	CITATIONS
163	Young Patients Undergoing Resection of Pancreatic Cancer Fare Better than their Older Counterparts. Journal of Gastrointestinal Surgery, 2013, 17, 339-344.	1.7	53
164	Heterogeneity of Pancreatic Cancer Metastases in a Single Patient Revealed by Quantitative Proteomics. Molecular and Cellular Proteomics, 2014, 13, 2803-2811.	3.8	52
165	Sessile serrated adenomas and classical adenomas: An epigenetic perspective on premalignant neoplastic lesions of the gastrointestinal tract. International Journal of Cancer, 2011, 129, 1889-1898.	5.1	49
166	Elevations in Cathepsin B Protein Content and Enzyme Activity Occur Independently of Glycosylation during Colorectal Tumor Progression. Journal of Biological Chemistry, 1997, 272, 29190-29199.	3.4	46
167	Frequent Î ² -Catenin Nuclear Labeling in Sessile Serrated Polyps of the Colorectum With Neoplastic Potential. American Journal of Clinical Pathology, 2008, 129, 416-423.	0.7	45
168	CpG Island Methylator Phenotype–Positive Tumors in the Absence of <i>MLH1</i> Methylation Constitute a Distinct Subset of Duodenal Adenocarcinomas and Are Associated with Poor Prognosis. Clinical Cancer Research, 2012, 18, 4743-4752.	7.0	45
169	Reliable Detection of Somatic Mutations in Fine Needle Aspirates of Pancreatic Cancer With Next-generation Sequencing. Annals of Surgery, 2016, 263, 153-161.	4.2	45
170	A Broad Survey of Cathepsin K Immunoreactivity in Human Neoplasms. American Journal of Clinical Pathology, 2013, 139, 151-159.	0.7	44
171	ETS-Transcription Factor ETV1 Regulates Stromal Expansion andÂMetastasis in Pancreatic Cancer. Gastroenterology, 2016, 151, 540-553.e14.	1.3	44
172	Intratumor heterogeneity reflects clinical disease course. Nature Cancer, 2020, 1, 3-6.	13.2	44
173	Alterations in driver genes are predictive of survival in patients with resected pancreatic ductal adenocarcinoma. Cancer, 2020, 126, 3939-3949.	4.1	44
174	Aberrant methylation of Reprimo correlates with genetic instability and predicts poor prognosis in pancreatic ductal adenocarcinoma. Cancer, 2006, 107, 251-257.	4.1	43
175	Deep Clonal Profiling of Formalin Fixed Paraffin Embedded Clinical Samples. PLoS ONE, 2012, 7, e50586.	2.5	42
176	Genomic Landscape of Pancreatic Adenocarcinoma in Younger versus Older Patients: Does Age Matter?. Clinical Cancer Research, 2019, 25, 2185-2193.	7.0	41
177	Accelerated single cell seeding in relapsed multiple myeloma. Nature Communications, 2020, 11, 3617.	12.8	41
178	Pancreaticobiliary Cancers With Deficient Methylenetetrahydrofolate Reductase Genotypes. Clinical Gastroenterology and Hepatology, 2005, 3, 752-760.	4.4	40
179	Genetic and clinical correlates of entosis in pancreatic ductal adenocarcinoma. Modern Pathology, 2020, 33, 1822-1831.	5.5	40
180	dCK expression correlates with 5-fluorouracil efficacy and HuR cytoplasmic expression in pancreatic cancer. Cancer Biology and Therapy, 2014, 15, 688-698.	3.4	39

#	Article	IF	Citations
181	Genomic instability in pancreatic adenocarcinoma: a new step towards precision medicine and novel therapeutic approaches. Expert Review of Gastroenterology and Hepatology, 2016, 10, 1-13.	3.0	39
182	Functional p38 MAPK Identified by Biomarker Profiling of Pancreatic Cancer Restrains Growth through JNK Inhibition and Correlates with Improved Survival. Clinical Cancer Research, 2014, 20, 6200-6211.	7.0	38
183	Mutant p53 Together with $TGF\hat{l}^2$ Signaling Influence Organ-Specific Hematogenous Colonization Patterns of Pancreatic Cancer. Clinical Cancer Research, 2017, 23, 1607-1620.	7.0	37
184	CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma. Abdominal Radiology, 2019, 44, 3148-3157.	2.1	37
185	MITI minimum information guidelines for highly multiplexed tissue images. Nature Methods, 2022, 19, 262-267.	19.0	37
186	Gene expression profiling identifies markers of ampullary adenocarcinoma. Cancer Biology and Therapy, 2004, 3, 651-656.	3.4	35
187	Assessment of epidermal growth factor receptor (EGFR) signaling in paired colorectal cancer and normal colon tissue samples using computer-aided immunohistochemical analysis. Cancer Biology and Therapy, 2005, 4, 1381-1386.	3.4	35
188	Stromal responses to carcinomas of the pancreas: Juxtatumoral gene expression conforms to the infiltrating pattern and not the biologic subtype. Cancer Biology and Therapy, 2005, 4, 302-307.	3.4	35
189	Patchy Distribution of Pathologic Abnormalities in Autoimmune Pancreatitis. American Journal of Surgical Pathology, 2008, 32, 1762-1769.	3.7	35
190	Autophagy, p53, and Pancreatic Cancer. New England Journal of Medicine, 2014, 370, 1352-1353.	27.0	35
191	Early-Onset Pancreas Cancer: Clinical Descriptors, Genomics, and Outcomes. Journal of the National Cancer Institute, 2021, 113, 1194-1202.	6.3	35
192	<i>MYC</i> Levels Regulate Metastatic Heterogeneity in Pancreatic Adenocarcinoma. Cancer Discovery, 2022, 12, 542-561.	9.4	35
193	Histologic Variations in Juvenile Polyp Phenotype Correlate With Genetic Defect Underlying Juvenile Polyposis. American Journal of Surgical Pathology, 2011, 35, 530-536.	3.7	34
194	Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy. Expert Opinion on Therapeutic Targets, 2016, 20, 341-359.	3.4	34
195	Evaluation of GATA-4 and GATA-5 methylation profiles in human pancreatic cancers indicate promoter methylation patterns distinct from other human tumor types. Cancer Biology and Therapy, 2007, 6, 1546-1552.	3.4	33
196	A new branch on the tree: Next-generation sequencing in the study of cancer evolution. Seminars in Cell and Developmental Biology, 2012, 23, 237-242.	5.0	33
197	iNOS Regulates the Therapeutic Response of Pancreatic Cancer Cells to Radiotherapy. Cancer Research, 2020, 80, 1681-1692.	0.9	31
198	Dual mitogen-activated protein kinase and epidermal growth factor receptor inhibition in biliary and pancreatic cancer. Molecular Cancer Therapeutics, 2007, 6, 1079-1088.	4.1	30

#	Article	IF	CITATIONS
199	RPL38, FOSL1, and UPP1 Are Predominantly Expressed in the Pancreatic Ductal Epithelium. Pancreas, 2005, 30, 158-167.	1.1	29
200	p120 Catenin Suppresses Basal Epithelial Cell Extrusion in Invasive Pancreatic Neoplasia. Cancer Research, 2016, 76, 3351-3363.	0.9	29
201	Smad4 Loss Correlates With Higher Rates of Local and Distant Failure in Pancreatic Adenocarcinoma Patients Receiving Adjuvant Chemoradiation. Pancreas, 2018, 47, 208-212.	1.1	28
202	Ampullary cancer: Evaluation of somatic and germline genetic alterations and association with clinical outcomes. Cancer, 2019, 125, 1441-1448.	4.1	28
203	Germ cell tumors and associated hematologic malignancies evolve from a common shared precursor. Journal of Clinical Investigation, 2020, 130, 6668-6676.	8.2	28
204	Increased expression of cytoplasmic HuR in familial adenomatous polyposis. Cancer Biology and Therapy, 2008, 7, 424-427.	3.4	27
205	Reed-Sternberg-like cells in lymph node aspirates in the absence of Hodgkin's disease: Pathologic significance and differential diagnosis. Diagnostic Cytopathology, 2002, 27, 335-339.	1.0	26
206	Optimizing the development of targeted agents in pancreatic cancer: tumor fine-needle aspiration biopsy as a platform for novel prospective ex vivo drug sensitivity assays. Molecular Cancer Therapeutics, 2007, 6, 515-523.	4.1	26
207	Serial analysis of gene expression of lobular carcinoma in situ identifies down regulation of claudin 4 and overexpression of matrix metalloproteinase 9. Breast Cancer Research, 2008, 10, R91.	5.0	26
208	Recurrent, truncating <i>SOX9</i> mutations are associated with SOX9 overexpression, <i>KRAS</i> mutation, and <i>TP53</i> wild type status in colorectal carcinoma. Oncotarget, 2016, 7, 50875-50882.	1.8	26
209	Cathepsin B Activity and Protein Levels in Thyroid Carcinoma, Graves' Disease, and Multinodular Goiters. Thyroid, 1999, 9, 569-577.	4.5	25
210	Sessile serrated adenomas: high-risk lesions?. Human Pathology, 2012, 43, 1808-1814.	2.0	25
211	FAM190A Deficiency Creates a Cell Division Defect. American Journal of Pathology, 2013, 183, 296-303.	3.8	25
212	Fumarate hydratase <i>FH</i> c.1431_1433dupAAA (p.Lys477dup) variant is not associated with cancer including renal cell carcinoma. Human Mutation, 2020, 41, 103-109.	2.5	25
213	The Tumor Suppressor <i>rpl36</i> Restrains KRAS ^{G12V} -Induced Pancreatic Cancer. Zebrafish, 2014, 11, 551-559.	1.1	24
214	Pancreatic carcinogenesis $\hat{a}\in$ " several small steps or one giant leap?. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 7-8.	17.8	24
215	Pancreatic cancer stem cells may define tumor stroma characteristics and recurrence patterns in pancreatic ductal adenocarcinoma. BMC Cancer, 2021, 21, 385.	2.6	24
216	Pancreas cancer and <i>BRCA</i> : A critical subset of patients with improving therapeutic outcomes. Cancer, 2021, 127, 4393-4402.	4.1	24

#	Article	IF	Citations
217	When should one subtract background fluorescence in 2-color microarrays?. Biostatistics, 2006, 8, 695-707.	1.5	23
218	Establishment and Characterization of a New Cell Line, A99, From a Primary Small Cell Carcinoma of the Pancreas. Pancreas, 2011, 40, 905-910.	1.1	21
219	Origin of metastases: Subspecies of cancers generated by intrinsic karyotypic variations. Cell Cycle, 2012, 11, 1151-1166.	2.6	21
220	Correlation of Smad4 Status With Outcomes in Patients Receiving Erlotinib Combined With Adjuvant Chemoradiation and Chemotherapy After Resection for Pancreatic Adenocarcinoma. International Journal of Radiation Oncology Biology Physics, 2013, 87, 458-459.	0.8	21
221	IGFBP-3 Gene Methylation in Primary Tumor Predicts Recurrence of Stage II Colorectal Cancers. Annals of Surgery, 2016, 263, 337-344.	4.2	21
222	CNS Involvement in Pancreatic Adenocarcinoma: a Report of Eight Cases from the Johns Hopkins Hospital and Review of Literature. Journal of Gastrointestinal Cancer, 2015, 46, 5-8.	1.3	20
223	RhoC Interacts with Integrin $\hat{l}\pm5\hat{l}^21$ and Enhances Its Trafficking in Migrating Pancreatic Carcinoma Cells. PLoS ONE, 2013, 8, e81575.	2.5	20
224	Patient-reported outcomes of a multicenter phase 2 study investigating gemcitabine and stereotactic body radiation therapy in locally advanced pancreatic cancer. Practical Radiation Oncology, 2016, 6, 417-424.	2.1	19
225	Pancreatic cancers suppress negative feedback of glucose transport to reprogram chromatin for metastasis. Nature Communications, 2020, 11, 4055.	12.8	19
226	Pancreatic cancer prognosis is predicted by an ATAC-array technology for assessing chromatin accessibility. Nature Communications, 2021, 12, 3044.	12.8	19
227	Phase I Trial of Oxaliplatin, Infusional 5-Fluorouracil, and Leucovorin (FOLFOX4) With Erlotinib and Bevacizumab in Colorectal Cancer. Clinical Colorectal Cancer, 2010, 9, 297-304.	2.3	18
228	Keys to Personalized Care in Pancreatic Oncology. Journal of Clinical Oncology, 2012, 30, 4049-4950.	1.6	18
229	Pancreatic cancer genomics: insights and opportunities for clinical translation. Genome Medicine, 2013, 5, 26.	8.2	18
230	MUC1 Promoter–Driven DTA as a Targeted Therapeutic Strategy against Pancreatic Cancer. Molecular Cancer Research, 2015, 13, 439-448.	3.4	18
231	Methylation-based Cell-free DNA Signature for Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 1267-1273.	1.1	18
232	Genomic and transcriptomic analysis of a library of small cell lung cancer patient-derived xenografts. Nature Communications, 2022, 13, 2144.	12.8	18
233	Quantification of nucleic acid quality in postmortem tissues from a cancer research autopsy program. Oncotarget, 2016, 7, 66906-66921.	1.8	17
234	Gene expression profiles associated with advanced pancreatic cancer. International Journal of Clinical and Experimental Pathology, 2008, 1, 32-43.	0.5	17

#	Article	IF	Citations
235	Tumors with unmethylated MLH1 and the CpG island methylator phenotype are associated with a poor prognosis in stage II colorectal cancer patients. Oncotarget, 2016, 7, 86480-86489.	1.8	15
236	Increased Cyclooxygenase-2 Expression in Juvenile Polyposis Syndrome. Clinical Gastroenterology and Hepatology, 2009, 7, 93-97.	4.4	14
237	Rapid Characterization of Candidate Biomarkers for Pancreatic Cancer Using Cell Microarrays (CMAs). Journal of Proteome Research, 2012, 11, 5556-5563.	3.7	14
238	Characterization of genetic subclonal evolution in pancreatic cancer mouse models. Nature Communications, 2019, 10, 5435.	12.8	14
239	Simple mucinous cysts of the pancreas have heterogeneous somatic mutations. Human Pathology, 2020, 101, 1-9.	2.0	14
240	Gene Expression in Neoplasms of the Pancreas: Applications to Diagnostic Pathology. Advances in Anatomic Pathology, 2003, 10, 125-134.	4.3	13
241	<i>KRAS</i> G> A mutation favors poor tumor differentiation but may not be associated with prognosis in patients with curatively resected duodenal adenocarcinoma. International Journal of Cancer, 2013, 132, 2502-2509.	5.1	13
242	Colchicine Effect in a Colonic Hyperplastic Polyp. Archives of Pathology and Laboratory Medicine, 2002, 126, 615-617.	2.5	12
243	Differential expression of multiple genes in association with MADH4/DPC4/SMAD4 inactivation in pancreatic cancer. International Journal of Clinical and Experimental Pathology, 2008, 1, 510-7.	0.5	12
244	Hypersensitivities for Acetaldehyde and Other Agents among Cancer Cells Null for Clinically Relevant Fanconi Anemia Genes. American Journal of Pathology, 2014, 184, 260-270.	3.8	11
245	Personalized Management of Pancreatic Ductal Adenocarcinoma Patients through Computational Modeling. Cancer Research, 2017, 77, 3325-3335.	0.9	11
246	Unbiased in vivo preclinical evaluation of anticancer drugs identifies effective therapy for the treatment of pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30670-30678.	7.1	11
247	The developmental transcription factor Gata4 is overexpressed in pancreatic ductal adenocarcinoma. International Journal of Clinical and Experimental Pathology, 2009, 3, 47-55.	0.5	11
248	The association between circulating high-sensitivity C-reactive protein concentration and pathologic measures of colonic inflammation. Cancer Causes and Control, 2014, 25, 409-418.	1.8	10
249	Homologous recombination deficiency (HRD): A biomarker for first-line (1L) platinum in advanced pancreatic ductal adenocarcinoma (PDAC) Journal of Clinical Oncology, 2019, 37, 4132-4132.	1.6	10
250	Local recurrences at the anastomotic area are clonally related to the primary tumor in sporadic colorectal carcinoma. Oncotarget, 2017, 8, 42487-42494.	1.8	10
251	Cronkhite-Canada Syndrome: Gastric Involvement Diagnosed by MDCT. Case Reports in Medicine, 2009, 2009, 1-4.	0.7	9
252	Transflip mutations produce deletions in pancreatic cancer. Genes Chromosomes and Cancer, 2015, 54, 472-481.	2.8	9

#	Article	IF	CITATIONS
253	Tumor diversity and evolution revealed through RADseq. Oncotarget, 2017, 8, 41792-41805.	1.8	9
254	Are We Systematically Under-Dosing Patients With Fluorouracil?. Journal of Clinical Oncology, 2015, 33, e36-e37.	1.6	8
255	Alterations of type II classical cadherin, cadherin†10 (CDH10), is associated with pancreatic ductal adenocarcinomas. Genes Chromosomes and Cancer, 2017, 56, 427-435.	2.8	8
256	CpG island methylator phenotype and its association with malignancy in sporadic duodenal adenomas. Epigenetics, 2014, 9, 738-746.	2.7	7
257	An unusual genomic variant of pancreatic ductal adenocarcinoma with an indolent clinical course. Journal of Physical Education and Sports Management, 2017, 3, a001701.	1.2	6
258	The Genetic Evolution of Treatment-Resistant Cutaneous, Acral, and Uveal Melanomas. Clinical Cancer Research, 2021, 27, 1516-1525.	7.0	6
259	Cyst Fluid Analysis in Pancreatic Intraductal Papillary Mucinous Neoplasms. Clinical Cancer Research, 2016, 22, 4966-4967.	7.0	5
260	Initial Whole-Genome Sequencing of Plasma Cell Neoplasms in First Responders and Recovery Workers Exposed to the World Trade Center Attack of September 11, 2001. Clinical Cancer Research, 2021, 27, 2111-2118.	7.0	5
261	Cancer Gene Profiling in Pancreatic Cancer. Methods in Molecular Biology, 2009, 576, 279-292.	0.9	5
262	Young-onset pancreas cancer (PC) in patients less than or equal to 50 years old at Memorial Sloan Kettering (MSK): Descriptors, genomics, and outcomes Journal of Clinical Oncology, 2020, 38, 774-774.	1.6	5
263	Stakeholders' perceptions and information needs regarding research medical donation (RMD) Journal of Clinical Oncology, 2018, 36, 27-27.	1.6	5
264	Evidence for reduced BRCA2 functional activity in Homo sapiens after divergence from the chimpanzee-human last common ancestor. Cell Reports, 2022, 39, 110771.	6.4	5
265	Prospective assessment for pathogenic germline alterations (PGA) in pancreas cancer (PAC) Journal of Clinical Oncology, 2017, 35, 4102-4102.	1.6	4
266	Abstract 970: The mutational landscape of normal human endometrial epithelium. Cancer Research, 2019, 79, 970-970.	0.9	4
267	Personalized Medicine in Pancreatic Cancer: Prognosis and Potential Implications for Therapy. Journal of Gastrointestinal Surgery, 2012, 16, 1651-1652.	1.7	3
268	The Pancreas. , 2010, , 891-904.		3
269	Colloid Carcinomas of the Pancreas and Periampullary Region. American Journal of Surgical Pathology, 2002, 26, 952-953.	3.7	3
270	Abstract 4137: Clonal evolution defines the natural history of metastatic pancreatic cancer., 2015,,.		3

#	Article	IF	CITATIONS
271	Stakeholders' Perceptions and Information Needs Regarding Research Medical Donation. Journal of Pain and Symptom Management, 2019, 58, 792-804.e6.	1.2	2
272	Plasma KRAS as a biomarker for pancreatic ductal adenocarcinoma (PDAC) Journal of Clinical Oncology, 2018, 36, 316-316.	1.6	2
273	Cathepsin D protein levels in colorectal tumors: divergent expression patterns suggest complex regulation and function. International Journal of Oncology, 2004, 24, 473-85.	3.3	2
274	Concurrent Germline <i>BRCA1</i> /i>/ <i>2</i> and Mismatch Repair Mutations in Young-Onset Pancreatic and Colorectal Cancer: The Importance of Comprehensive Germline and Somatic Characterization to Inform Therapeutic Options. JCO Precision Oncology, 2022, , .	3.0	2
275	Immunohistochemistry and <i>In Situ </i> Hybridization in Pancreatic Neoplasia., 2005, 103, 067-088.		1
276	Cross-platform Comparison of Two Pancreatic Cancer Phenotypes. Cancer Informatics, 2010, 9, CIN.S5755.	1.9	1
277	The Hidden Beauty in Biomedical Imaging. Journal of Visual Communication in Medicine, 2015, 38, 220-227.	0.6	1
278	Abstract 2438: BAMBI Is overexpressed in metastatic pancreatic cancers with genetically Intact TGF- \hat{l}^2 pathways: A potential mechanism to escape TGF- \hat{l}^2 signaling during metastasis formation. Cancer Research, 2011, 71, 2438-2438.	0.9	1
279	Abstract 3961: Computational modeling of pancreatic cancer reveals growth and dissemination kinetics and suggests optimum treatment strategies. , 2012, , .		1
280	Blood-based screening for methylation changes in colorectal cancer patients using novel nanotechnologies Journal of Clinical Oncology, 2013, 31, 384-384.	1.6	1
281	Abstract 4006: Smad6 upregulation provides an alternative mechanism for BMP inactivation in SMAD4 wild type pancreatic cancers, 2013, , .		1
282	Is successful resection following neoadjuvant radiation therapy for borderline resectable pancreatic cancer dependent on improved tumor-vessel relationships?. Journal of Clinical Oncology, 2013, 31, 4057-4057.	1.6	1
283	Whole Genome Sequencing of Extramedullary Myeloma Autopsy Tumors Reveals a Genomic Portrait at Culmination of Clonal Convergence. Blood, 2018, 132, 3169-3169.	1.4	1
284	Abstract 3083: A novel hedgehog signaling inhibitor for targeting pancreatic ductal adenocarcinoma. , 2019, , .		1
285	TCR Repertoires in Graft-Versus-Host-Disease (GVHD)-Target Tissues Reveals Tissue Specificity of the Alloimmune Response. Blood, 2020, 136, 21-23.	1.4	1
286	Reprimo-like is a P53 Responsive Gene Whose Promoter Methylation May Predict for Radiation Responsiveness in Pancreatic Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 78, S129.	0.8	0
287	Considerations for Sequencing Analyses of Pancreatic Cancer Progression and Metastasis. Methods in Molecular Biology, 2013, 980, 121-129.	0.9	0
288	Molecular pathology of pancreatic cancer and premalignant tumors., 2017, , 139-149.e3.		0

#	Article	IF	CITATIONS
289	Longitudinal follow-up of a prospective phase II trial of neoadjuvant gemcitabine and oxaliplatin in patients with resectable pancreas adenocarcinoma reveals distinct patterns of survivorship. Hpb, 2019, 21, S58-S59.	0.3	0
290	Optimizing targeted agents development in pancreatic cancer: A fine-needle aspirate biopsy (FNAB) based <i>ex vivo</i> and <i>in vivo</i> assay. Journal of Clinical Oncology, 2006, 24, 3002-3002.	1.6	0
291	Abstract 931: HMGA1 drives expansion of the intestinal stem cell compartment in transgenic mice and tumor progression in colon cancer cells. , 2011, , .		O
292	Abstract 4291: Functional p38 mitoge-activated protein kinase activity restrains pancreatic cancer growth in vitro and correlates with improved eurvival of pancreatic cancer patients. , $2011, \ldots$		O
293	Abstract 5318: DPC4 loss results in the activation of alternative oncogenic pathways in pancreatic cancer., 2012,,.		O
294	Abstract SY30-01: Evolution and dynamics of pancreatic cancer progression. , 2012, , .		0
295	Abstract 1269: Activation of diverse signaling pathways in pancreatic cancer revealed by phosphoproteomics. , 2012, , .		O
296	The Genetics of Pancreatic Cancer Progression. , 2013, , 171-184.		0
297	Abstract IA5: Genetics of clonal progression in pancreatic cancer. , 2013, , .		0
298	Abstract 3580: Acetaldehyde and drug hypersensitivities of Fanconi anemia defects: Implications for cancer initiation, prevention, and therapy , 2013 , , .		0
299	Association of ALDH-expressing cancer stem cells with survival in patients with resected pancreatic adenocarcinoma treated with adjuvant chemoradiation Journal of Clinical Oncology, 2014, 32, 262-262.	1.6	0
300	Detection of somatic mutations in fine needle aspirates of pancreatic cancer with next-generation sequencing Journal of Clinical Oncology, 2014, 32, e15225-e15225.	1.6	0
301	Abstract 66: p120 catenin: A novel regulator of PanIN epithelial cell delamination in preinvasive pancreatic cancer. , 2014, , .		O
302	Abstract A68: Hypoxia-induced CHK1 repression may enhance the mutator phenotype of pancreatic cancer cells. , $2015, , .$		0
303	Abstract 4186: p120 catenin: A novel regulator of epithelial cell delamination in early Kras-driven pancreatic cancer. , 2015, , .		O
304	Genomic landscape of pancreatic adenocarcinoma: Does age matter?. Journal of Clinical Oncology, 2016, 34, 250-250.	1.6	0
305	Do pancreatic cancer (PDA) stem cell markers predict biologic behavior?. Journal of Clinical Oncology, 2016, 34, 4112-4112.	1.6	0
306	Abstract 2374: Reconstructing the evolutionary history of metastatic cancers. , 2016, , .		0

#	Article	IF	Citations
307	Abstract 2419: Anastomotic recurrences are clonally related to primary tumors in sporadic colorectal carcinoma. , $2016, \ldots$		0
308	Abstract PR03: Mutant p53 promotes adenocarcinoma in pancreatic ductal cells., 2016,,.		0
309	Whole Exome Sequencing from Nine Independent Sites of Extraosseous Disease in a Single Patient with Relapsed Multiple Myeloma Show That Extramedullary Disease Arise through a Combination of Branched and Parallel Evolution. Blood, 2016, 128, 2090-2090.	1.4	0
310	Do pancreas cancer stem cells play crucial role in survival outcome?. Journal of Clinical Oncology, 2017, 35, e15721-e15721.	1.6	O
311	Abstract 2829: Identification of transcriptomic signatures of organotropism in pancreatic cancer metastasis. , 2017, , .		0
312	Abstract 504: Quantification of nucleic acid quality in postmortem tissues from a cancer research autopsy program. , $2017, \dots$		0
313	Abstract 2910: Inter metastatic genetic heterogeneity is a characteristic feature of recurrent pancreatic cancer., 2017,,.		O
314	Prospective analysis of somatic and germline genetic alterations in patients with ampullary carcinomas Journal of Clinical Oncology, 2018, 36, 308-308.	1.6	0
315	Mytype: A Capture Based Sequencing Approach to Detect Somatic Mutations, Copy Number Changes and IGH Translocations in Multiple Myeloma. Blood, 2018, 132, 5588-5588.	1.4	O
316	Pilot study of plasma KRAS as a prognostic biomarker in localized pancreas ductal adenocarcinoma (PDAC) Journal of Clinical Oncology, 2019, 37, 294-294.	1.6	0
317	Association of pancreatic cancer stem cells with tumor stroma type Journal of Clinical Oncology, 2019, 37, e15771-e15771.	1.6	0
318	Abstract IO7: Multimodal evolutionary dynamics of pancreatic cancer., 2019,,.		0
319	Initial Whole Genome Sequencing of Plasma Cell Neoplasms in First Responders and Recovery Workers Exposed to the World Trade Center Attack of September 11, 2001. Blood, 2020, 136, 50-51.	1.4	0