Mercedes Ferrer Parra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4631581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Spirulina</i> extract improves age-induced vascular dysfunction. Pharmaceutical Biology, 2022, 60, 627-637.	1.3	7
2	Vasomotor action of androgens in the mesenteric artery of hypertensive rats. Role of perivascular innervation. PLoS ONE, 2021, 16, e0246254.	1.1	1
3	Androgen Deprivation Therapy in Patients With Prostate Cancer Increases Serum Levels of Thromboxane A2: Cardiovascular Implications. Frontiers in Cardiovascular Medicine, 2021, 8, 653126.	1.1	6
4	Effect of CLA supplementation on factors related to vascular dysfunction in arteries of orchidectomized rats. Prostaglandins and Other Lipid Mediators, 2021, 157, 106586.	1.0	2
5	Regular insulin added to total parenteral nutrition vs subcutaneous glargine in non-critically ill diabetic inpatients, a multicenter randomized clinical trial: INSUPAR trial. Clinical Nutrition, 2020, 39, 388-394.	2.3	17
6	Conjugated Linoleic Acid Supplemented Diet Influences Serum Markers in Orchidectomized Spragueâ€Đawley Rats. European Journal of Lipid Science and Technology, 2020, 122, 1900098.	1.0	7
7	Beneficial Effects of Spirulina Aqueous Extract on Vasodilator Function of Arteries from Hypertensive Rats. International Journal of Vascular Medicine, 2020, 2020, 1-9.	0.4	3
8	Risk Factors for Hypoglycemia in Inpatients with Total Parenteral Nutrition and Type 2 Diabetes: A Post HOC Analysis of the Insupar Study. Endocrine Practice, 2020, 26, 604-611.	1.1	4
9	Gonadal function protects against organ culture-induced vascular damage. Involvement of prostanoids. Prostaglandins and Other Lipid Mediators, 2020, 148, 106406.	1.0	2
10	Effects Of Cla On Orchidectomy-Associated Alterations In Serum Biomarkers. Atherosclerosis, 2019, 287, e173-e174.	0.4	0
11	Defective p27 phosphorylation at serine 10 affects vascular reactivity and increases abdominal aortic aneurysm development via Cox-2 activation. Journal of Molecular and Cellular Cardiology, 2018, 116, 5-15.	0.9	6
12	Vasoactive androgens: Vasorelaxing effects and their potential regulation of blood pressure. Endocrine Research, 2018, 43, 166-175.	0.6	13
13	Effects of Spirulina Extracts on Vasodilator Function of Arteries from Hypertensive Rats. FASEB Journal, 2018, 32, 847.3.	0.2	Ο
14	Involvement of NO and ROS in Organ Cultureâ€induced Vascular Damage. Influence of Androgenic Function. FASEB Journal, 2018, 32, 584.6.	0.2	0
15	Antihypertensive effects of androgens in conscious, spontaneously hypertensive rats. Journal of Steroid Biochemistry and Molecular Biology, 2017, 167, 106-114.	1.2	27
16	Docosahexaenoic Acid Supplemented Diet Influences the Orchidectomy-Induced Vascular Dysfunction in Rat Mesenteric Arteries. PLoS ONE, 2017, 12, e0168841.	1.1	7
17	Dietary docosahexaenoic acid supplementation prevents the formation of cholesterol oxidation products in arteries from orchidectomized rats. PLoS ONE, 2017, 12, e0185805.	1.1	3
18	Prevalence of Diabetes, Prediabetes, and Stress Hyperglycemia: Insulin Therapy and Metabolic Control in Patients on Total Parenteral Nutrition (Prospective Multicenter Study). Endocrine Practice, 2015, 21, 59-67.	1.1	16

#	Article	IF	CITATIONS
19	Effect of Dietary Docosahexaenoic Acid Supplementation on the Participation of Vasodilator Factors in Aorta from Orchidectomized Rats. PLoS ONE, 2015, 10, e0142039.	1.1	22
20	Wire Myography to Study Vascular Tone and Vascular Structure of Isolated Mouse Arteries. Methods in Molecular Biology, 2015, 1339, 255-276.	0.4	25
21	Time-Dependent Effect of Orchidectomy on Vascular Nitric Oxide and Thromboxane A2 Release. Functional Implications to Control Cell Proliferation through Activation of the Epidermal Growth Factor Receptor. PLoS ONE, 2014, 9, e102523.	1.1	13
22	Testosterone and β-oestradiol prevent inward remodelling of rat small mesenteric arteries: role of NO and transglutaminase. Clinical Science, 2013, 124, 719-728.	1.8	9
23	Parenteral Nutrition–Associated Hyperglycemia in Non–Critically III Inpatients Increases the Risk of In-Hospital Mortality (Multicenter Study). Diabetes Care, 2013, 36, 1061-1066.	4.3	78
24	Ovariectomy Increases the Participation of Hyperpolarizing Mechanisms in the Relaxation of Rat Aorta. PLoS ONE, 2013, 8, e73474.	1.1	12
25	Phorbol Dibutyrate Induces Contractions in Bovine Cerebral Arteries by an Extracellular Calcium-independent Mechanism. Journal of Pharmacy and Pharmacology, 2011, 45, 274-279.	1.2	3

26

#	Article	IF	CITATIONS
37	Orchidectomy increases the formation of prostanoids and modulates their role in the acetylcholine-induced relaxation in the rat aorta. Cardiovascular Research, 2007, 77, 590-599.	1.8	26
38	Long-term fenofibrate treatment impairs endothelium-dependent dilation to acetylcholine by altering the cyclooxygenase pathway. Cardiovascular Research, 2007, 75, 398-407.	1.8	20
39	Dexamethasone Decreases Contraction to Electrical Field Stimulation in Mesenteric Arteries from Spontaneously Hypertensive Rats through Decreases in Thromboxane A2 Release. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 1129-1136.	1.3	9
40	Protein kinase C activation increases endothelial nitric oxide release in mesenteric arteries from orchidectomized rats. Journal of Endocrinology, 2007, 192, 189-197.	1.2	23
41	Aldosterone increases RAMP1 expression in mesenteric arteries from spontaneously hypertensive rats. Regulatory Peptides, 2006, 134, 61-66.	1.9	18
42	Orchidectomy Increases β-Adrenoceptor Activation-Mediated Neuronal Nitric Oxide and Noradrenaline Release in Rat Mesenteric Artery. Neuroendocrinology, 2006, 84, 378-385.	1.2	8
43	Orchidectomy increases expression and activity of Cu/Zn-superoxide dismutase, while decreasing endothelial nitric oxide bioavailability. Journal of Endocrinology, 2006, 190, 771-778.	1.2	21
44	Orchidectomy Modulates α ₂ -Adrenoceptor Reactivity in Rat Mesenteric Artery through Increased Thromboxane A ₂ Formation. Journal of Vascular Research, 2006, 43, 101-108.	0.6	23
45	Participation of Prostacyclin in Endothelial Dysfunction Induced by Aldosterone in Normotensive and Hypertensive Rats. Hypertension, 2005, 46, 107-112.	1.3	115
46	Androgen deprivation increases neuronal nitric oxide metabolism and its vasodilator effect in rat mesenteric arteries. Nitric Oxide - Biology and Chemistry, 2005, 12, 163-176.	1.2	35
47	Male Castration Increases Neuronal Nitric Oxide Synthase Activity in the Rat Mesenteric Artery through Protein Kinase C Activation. Journal of Vascular Research, 2005, 42, 526-534.	0.6	16
48	Protein kinase A increases electrical stimulation-induced neuronal nitric oxide release in rat mesenteric artery. European Journal of Pharmacology, 2004, 487, 167-173.	1.7	18
49	Endogenous prostacyclin increases neuronal nitric oxide release in mesenteric artery from spontaneously hypertensive rats. European Journal of Pharmacology, 2004, 506, 151-156.	1.7	10
50	Different effects of acute clenbuterol on vasomotor response in mesenteric arteries from young and old spontaneously hypertensive rats. European Journal of Pharmacology, 2003, 466, 289-299.	1.7	5
51	Aging Increases Neuronal Nitric Oxide Release and Superoxide Anion Generation in Mesenteric Arteries from Spontaneously Hypertensive Rats. Journal of Vascular Research, 2003, 40, 509-519.	0.6	29
52	Role of female sex hormones in neuronal nitric oxide release and metabolism in rat mesenteric arteries. Clinical Science, 2002, 103, 239-247.	1.8	13
53	Angiotensin II increases neurogenic nitric oxide metabolism in mesenteric arteries from hypertensive rats. Life Sciences, 2001, 68, 1169-1179.	2.0	16
54	Aging alters neuronal nitric oxide release from rat mesenteric arteries: role of presynaptic β-adrenoceptors. Clinical Science, 2001, 101, 321.	1.8	4

Mercedes Ferrer Parra

#	Article	IF	CITATIONS
55	Aging alters neuronal nitric oxide release from rat mesenteric arteries: role of presynaptic β-adrenoceptors. Clinical Science, 2001, 101, 321-328.	1.8	15
56	Role of protein kinase C in electrical-stimulation-induced neuronal nitric oxide release in mesenteric arteries from hypertensive rats. Clinical Science, 2000, 99, 277-283.	1.8	32
57	Role of protein kinase C in electrical-stimulation-induced neuronal nitric oxide release in mesenteric arteries from hypertensive rats. Clinical Science, 2000, 99, 277.	1.8	14
58	Increase in Neurogenic Nitric Oxide Metabolism by Endothelin-1 in Mesenteric Arteries from Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2000, 36, 541-547.	0.8	12
59	Changes of cardiac calcium homeostasis in spontaneously hypertensive rats. Autonomic and Autacoid Pharmacology, 1999, 19, 123-130.	0.7	7
60	Role of K+ channels and sodium pump in the vasodilation induced by acetylcholine, nitric oxide, and cyclic GMP in the rabbit aorta. General Pharmacology, 1999, 33, 35-41.	0.7	35
61	Diabetes alters neuronal nitric oxide release from rat mesenteric arteries. Role of protein kinase C. Life Sciences, 1999, 66, 337-345.	2.0	23
62	Gender differences in the endothelial regulation of α2-adrenoceptor-mediated contraction in the rat aorta. Clinical Science, 1999, 97, 19.	1.8	9
63	Gender differences in the endothelial regulation of α2-adrenoceptor-mediated contraction in the rat aorta. Clinical Science, 1999, 97, 19-25.	1.8	17
64	Androgen deprivation facilitates acetylcholine-induced relaxation by superoxide anion generation. Clinical Science, 1999, 97, 625-631.	1.8	13
65	Androgen deprivation facilitates acetylcholine-induced relaxation by superoxide anion generation. Clinical Science, 1999, 97, 625.	1.8	4
66	Effect of age on the vasorelaxation elicited by cromakalim. Role of K+ channels and cyclic GMP. Life Sciences, 1998, 63, 2071-2078.	2.0	4
67	Estrogen Replacement Modulates Resistance Artery Smooth Muscle and Endothelial α2-Adrenoceptor Reactivity. Endothelium: Journal of Endothelial Cell Research, 1998, 6, 133-141.	1.7	27
68	Involvement of protein kinase C in the supersensitivity to 5-HT caused by oxidized low-density lipoproteins. Life Sciences, 1997, 61, 1331-1339.	2.0	3
69	Estrogen Replacement Increases β-Adrenoceptor-Mediated Relaxation of Rat Mesenteric Arteries. Journal of Vascular Research, 1996, 33, 124-131.	0.6	57
70	Effect of clenbuterol on the modulation of noradrenaline release in the rat tail artery. Autonomic and Autacoid Pharmacology, 1996, 16, 243-250.	0.7	6
71	Heterogeneity of Endothelium-Dependent Mechanisms in Different Rabbit Arteries. Journal of Vascular Research, 1995, 32, 339-346.	0.6	35
72	Involvement of α2-adrenoceptors and protein kinase C on nicotine-induced facilitation of noradrenaline release in bovine cerebral arteries. General Pharmacology, 1995, 26, 827-833.	0.7	8

Mercedes Ferrer Parra

#	Article	IF	CITATIONS
73	Angiotensin modulation of vascular tone and adrenergic neurotransmission in cat femoral arteries. General Pharmacology, 1994, 25, 1691-1697.	0.7	3
74	Treatment with the anabolic steroid, nandrolone, reduces vasoconstrictor responses in rabbit arteries. European Journal of Pharmacology, 1994, 258, 103-110.	1.7	13
75	Chronic treatment with the anabolic steroid, nandrolone, inhibits vasodilator responses in rabbit aorta. European Journal of Pharmacology, 1994, 252, 233-241.	1.7	34
76	Comparison of the vasoconstrictor responses induced by endothelin and phorbol 12,13-dibutyrate in bovine cerebral arteries. Brain Research, 1992, 599, 186-196.	1.1	20
77	Presynaptic muscarinic receptor subtypes involved in the inhibition of acetylcholine and noradrenaline release in bovine cerebral arteries. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 345, 619-626.	1.4	21
78	Vasoconstrictive responses elicited by endothelin in bovine cerebral arteries. General Pharmacology, 1992, 23, 263-267.	0.7	16
79	Vasoconstrictive effects of angiotensin I and II in cat femoral arteries. Role of endothelium. General Pharmacology, 1992, 23, 1171-1175.	0.7	3