Svante Pääbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4631538/publications.pdf

Version: 2024-02-01

214 papers

57,342 citations

112 h-index 2071 204 g-index

236 all docs

236 docs citations

236 times ranked

35311 citing authors

#	Article	IF	Citations
1	A Draft Sequence of the Neandertal Genome. Science, 2010, 328, 710-722.	6.0	3,588
2	The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 2014, 505, 43-49.	13.7	1,830
3	A High-Coverage Genome Sequence from an Archaic Denisovan Individual. Science, 2012, 338, 222-226.	6.0	1,695
4	Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 2010, 468, 1053-1060.	13.7	1,537
5	Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 2002, 418, 869-872.	13.7	1,481
6	Mitochondrial genome variation and the origin of modern humans. Nature, 2000, 408, 708-713.	13.7	1,264
7	The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature, 2016, 538, 201-206.	13.7	1,216
8	Neandertal DNA Sequences and the Origin of Modern Humans. Cell, 1997, 90, 19-30.	13.5	1,214
9	Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 2014, 513, 409-413.	13.7	1,179
10	Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15758-15763.	3.3	1,097
11	Genetic Analyses from Ancient DNA. Annual Review of Genetics, 2004, 38, 645-679.	3.2	1,084
12	The evolution of gene expression levels in mammalian organs. Nature, 2011, 478, 343-348.	13.7	1,080
13	Deep proteome and transcriptome mapping of a human cancer cell line. Molecular Systems Biology, 2011, 7, 548.	3.2	878
14	The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 2014, 507, 354-357.	13.7	877
15	Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15672-15677.	3.3	870
16	Genome sequence of a 45,000-year-old modern human from western Siberia. Nature, 2014, 514, 445-449.	13.7	856
17	Intra- and Interspecific Variation in Primate Gene Expression Patterns. Science, 2002, 296, 340-343.	6.0	813
18	Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14616-14621.	3.3	799

#	Article	IF	CITATIONS
19	Ancient DNA. Nature Reviews Genetics, 2001, 2, 353-359.	7.7	774
20	The genetic history of Ice Age Europe. Nature, 2016, 534, 200-205.	13.7	729
21	Analysis of one million base pairs of Neanderthal DNA. Nature, 2006, 444, 330-336.	13.7	671
22	The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 2010, 464, 894-897.	13.7	659
23	An early modern human from Romania with a recent Neanderthal ancestor. Nature, 2015, 524, 216-219.	13.7	633
24	A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice. Cell, 2009, 137, 961-971.	13.5	555
25	Parallel Patterns of Evolution in the Genomes and Transcriptomes of Humans and Chimpanzees. Science, 2005, 309, 1850-1854.	6.0	550
26	Sequencing and Analysis of Neanderthal Genomic DNA. Science, 2006, 314, 1113-1118.	6.0	547
27	A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes. Current Biology, 2013, 23, 553-559.	1.8	540
28	Denisova Admixture and the First Modern Human Dispersals into Southeast Asia and Oceania. American Journal of Human Genetics, 2011, 89, 516-528.	2.6	525
29	Molecular cloning of Ancient Egyptian mummy DNA. Nature, 1985, 314, 644-645.	13.7	503
30	A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing. Cell, 2008, 134, 416-426.	13.5	503
31	A high-coverage Neandertal genome from Vindija Cave in Croatia. Science, 2017, 358, 655-658.	6.0	501
32	Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15716-15721.	3.3	499
33	Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature, 2019, 574, 418-422.	13.7	496
34	The Derived FOXP2 Variant of Modern Humans Was Shared with Neandertals. Current Biology, 2007, 17, 1908-1912.	1.8	487
35	Human-specific gene <i>ARHGAP11B</i> promotes basal progenitor amplification and neocortex expansion. Science, 2015, 347, 1465-1470.	6.0	487
36	DNA analysis of an early modern human from Tianyuan Cave, China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2223-2227.	3.3	484

#	Article	IF	CITATIONS
37	Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products. PLoS ONE, 2010, 5, e14004.	1.1	471
38	Targeted Retrieval and Analysis of Five Neandertal mtDNA Genomes. Science, 2009, 325, 318-321.	6.0	456
39	The bonobo genome compared with the chimpanzee and human genomes. Nature, 2012, 486, 527-531.	13.7	445
40	DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Research, 1993, 21, 3913-3914.	6.5	443
41	The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature, 2020, 587, 610-612.	13.7	437
42	Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 2016, 531, 504-507.	13.7	436
43	A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature, 2014, 505, 403-406.	13.7	434
44	Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA. PLoS ONE, 2012, 7, e34131.	1.1	428
45	The Date of Interbreeding between Neandertals and Modern Humans. PLoS Genetics, 2012, 8, e1002947.	1.5	402
46	Ancient gene flow from early modern humans into Eastern Neanderthals. Nature, 2016, 530, 429-433.	13.7	392
47	Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science, 2016, 352, 235-239.	6.0	391
48	Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10438-10443.	3.3	379
49	Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Research, 2010, 38, e87-e87.	6.5	362
50	Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2229-2234.	3.3	349
51	Ancient DNA Damage. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012567-a012567.	2.3	348
52	A view of Neandertal genetic diversity. Nature Genetics, 2000, 26, 144-146.	9.4	330
53	Neandertal and Denisovan DNA from Pleistocene sediments. Science, 2017, 356, 605-608.	6.0	329
54	No Evidence of Neandertal mtDNA Contribution to Early Modern Humans. PLoS Biology, 2004, 2, e57.	2.6	327

#	Article	IF	CITATIONS
55	The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature, 2018, 561, 113-116.	13.7	323
56	Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11736-11741.	3.3	313
57	Regional Patterns of Gene Expression in Human and Chimpanzee Brains. Genome Research, 2004, 14, 1462-1473.	2.4	311
58	Reconstructing Prehistoric African Population Structure. Cell, 2017, 171, 59-71.e21.	13.5	308
59	A Neutral Model of Transcriptome Evolution. PLoS Biology, 2004, 2, e132.	2.6	294
60	Neanderthals in central Asia and Siberia. Nature, 2007, 449, 902-904.	13.7	293
61	Early Allelic Selection in Maize as Revealed by Ancient DNA. Science, 2003, 302, 1206-1208.	6.0	287
62	Excrement analysis by PCR. Nature, 1992, 359, 199-199.	13.7	279
63	Evolution of primate gene expression. Nature Reviews Genetics, 2006, 7, 693-702.	7.7	279
64	Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evolutionary Biology, 2008, 8, 220.	3.2	261
65	Targeted Investigation of the Neandertal Genome by Array-Based Sequence Capture. Science, 2010, 328, 723-725.	6.0	255
66	A Complete mtDNA Genome of an Early Modern Human from Kostenki, Russia. Current Biology, 2010, 20, 231-236.	1.8	252
67	Palaeoproteomic evidence identifies archaic hominins associated with the $Ch\tilde{A}$ ¢telperronian at the Grotte du Renne. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11162-11167.	3.3	251
68	DNA sequence variation in a non-coding region of low recombination on the human X chromosome. Nature Genetics, 1999, 22, 78-81.	9.4	237
69	Molecular genetic analyses of the Tyrolean Ice Man. Science, 1994, 264, 1775-1778.	6.0	229
70	DNA phylogeny of the extinct marsupial wolf. Nature, 1989, 340, 465-467.	13.7	228
71	Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Research, 2012, 22, 611-622.	2.4	224
72	Patterns of coding variation in the complete exomes of three Neandertals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6666-6671.	3.3	223

#	Article	IF	CITATIONS
73	Genomic Sequencing of Pleistocene Cave Bears. Science, 2005, 309, 597-599.	6.0	221
74	A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans. Nature, 1995, 378, 489-492.	13.7	217
75	Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nature Genetics, 2001, 27, 155-156.	9.4	216
76	Conflict Among Individual Mitochondrial Proteins in Resolving the Phylogeny of Eutherian Orders. Journal of Molecular Evolution, 1998, 47, 307-322.	0.8	208
77	A Recent Evolutionary Change Affects a Regulatory Element in the Human FOXP2 Gene. Molecular Biology and Evolution, 2013, 30, 844-852.	3.5	205
78	Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12963-12968.	3.3	201
79	Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. ELife, 2016, 5, .	2.8	200
80	MicroRNA-Driven Developmental Remodeling in the Brain Distinguishes Humans from Other Primates. PLoS Biology, 2011, 9, e1001214.	2.6	198
81	Reconstructing the genetic history of late Neanderthals. Nature, 2018, 555, 652-656.	13.7	197
82	mtDNA Analysis of Nile River Valley Populations: A Genetic Corridor or a Barrier to Migration?. American Journal of Human Genetics, 1999, 64, 1166-1176.	2.6	194
83	Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature, 2006, 439, 724-727.	13.7	194
84	40,000-Year-Old Individual from Asia Provides Insight into Early Population Structure in Eurasia. Current Biology, 2017, 27, 3202-3208.e9.	1.8	191
85	Polymerase chain reaction reveals cloning artefacts. Nature, 1988, 334, 387-388.	13.7	190
86	Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. Journal of Molecular Evolution, 1990, 31, 101-112.	0.8	190
87	Reconstructing the DNA Methylation Maps of the Neandertal and the Denisovan. Science, 2014, 344, 523-527.	6.0	188
88	Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature, 2020, 581, 299-302.	13.7	188
89	FUNC: a package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics, 2007, 8, 41.	1.2	180
90	The Neandertal type site revisited: Interdisciplinary investigations of skeletal remains from the Neander Valley, Germany. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13342-13347.	3.3	177

#	Article	IF	CITATIONS
91	A high-coverage Neandertal genome from Chagyrskaya Cave. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15132-15136.	3.3	176
92	The Human Condition—A Molecular Approach. Cell, 2014, 157, 216-226.	13.5	175
93	Minisatellite diversity supports a recent African origin for modern humans. Nature Genetics, 1996, 13, 154-160.	9.4	173
94	Demographic history and linkage disequilibrium in human populations. Nature Genetics, 1997, 17, 435-438.	9.4	172
95	The Neandertal genome and ancient DNA authenticity. EMBO Journal, 2009, 28, 2494-2502.	3.5	170
96	A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	167
97	Aging and Gene Expression in the Primate Brain. PLoS Biology, 2005, 3, e274.	2.6	160
98	Why do human diversity levels vary at a megabase scale?. Genome Research, 2005, 15, 1222-1231.	2.4	156
99	Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14253-14258.	3.3	156
100	Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15696-15700.	3.3	154
101	The mosaic that is our genome. Nature, 2003, 421, 409-412.	13.7	153
102	Limits of long-term selection against Neandertal introgression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1639-1644.	3.3	151
103	COMPARATIVE PRIMATE GENOMICS. Annual Review of Genomics and Human Genetics, 2004, 5, 351-378.	2.5	148
104	Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Scientific Reports, 2016, 6, 23559.	1.6	144
105	Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science, 2018, 360, 548-552.	6.0	142
106	Rearrangements of mitochondrial transfer RNA genes in marsupials. Journal of Molecular Evolution, 1991, 33, 426-430.	0.8	139
107	Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature, 2019, 565, 640-644.	13.7	137
108	Computational challenges in the analysis of ancient DNA. Genome Biology, 2010, 11, R47.	13.9	135

#	Article	IF	Citations
109	Selection on Human Genes as Revealed by Comparisons to Chimpanzee cDNA. Genome Research, 2003, 13, 831-837.	2.4	130
110	A Comparison of Brain Gene Expression Levels in Domesticated and Wild Animals. PLoS Genetics, 2012, 8, e1002962.	1.5	130
111	Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science, 2020, 370, 584-587.	6.0	129
112	The Population History of Extant and Extinct Hyenas. Molecular Biology and Evolution, 2005, 22, 2435-2443.	3.5	128
113	MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains. PLoS Genetics, 2011, 7, e1002327.	1.5	126
114	Organization and Evolution of Brain Lipidome Revealed by Large-Scale Analysis of Human, Chimpanzee, Macaque, and Mouse Tissues. Neuron, 2015, 85, 695-702.	3.8	123
115	Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature, 2021, 592, 253-257.	13.7	119
116	Nuclear Gene Sequences from a Late Pleistocene Sloth Coprolite. Current Biology, 2003, 13, 1150-1152.	1.8	115
117	Molecular breeding of polymerases for amplification of ancient DNA. Nature Biotechnology, 2007, 25, 939-943.	9.4	115
118	Evidence for a Complex Demographic History of Chimpanzees. Molecular Biology and Evolution, 2004, 21, 799-808.	3.5	114
119	The genetical archaeology of the human genome. Nature Genetics, 1996, 14, 135-140.	9.4	105
120	From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing. Nucleic Acids Research, 2008, 36, e5-e5.	6.5	105
121	Evidence for Reproductive Isolation between Cave Bear Populations. Current Biology, 2004, 14, 40-43.	1.8	100
122	Direct dating of Neanderthal remains from the site of Vindija Cave and implications for the Middle to Upper Paleolithic transition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10606-10611.	3.3	100
123	Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c. Nature Neuroscience, 2016, 19, 1513-1522.	7.1	99
124	Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Research, 2020, 30, 776-789.	2.4	97
125	Toward a Neutral Evolutionary Model of Gene Expression. Genetics, 2005, 170, 929-939.	1.2	96
126	tRNA editing in metazoans. Nature, 1995, 377, 490-490.	13.7	95

#	Article	IF	CITATIONS
127	Ancient DNA Analyses Reveal High Mitochondrial DNA Sequence Diversity and Parallel Morphological Evolution of Late Pleistocene Cave Bears. Molecular Biology and Evolution, 2002, 19, 1244-1250.	3.5	94
128	AMPLIFYING ANCIENT DNA. , 1990, , 159-166.		90
129	A late Neandertal femur from Les Rochers-de-Villeneuve, France. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7085-7090.	3.3	90
130	The Mitochondrial Genome of the Hemichordate Balanoglossus carnosus and the Evolution of Deuterostome Mitochondria. Genetics, 1998, 150, 1115-1123.	1.2	90
131	Metabolic changes in schizophrenia and human brain evolution. Genome Biology, 2008, 9, R124.	13.9	89
132	Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. Nature Communications, 2018, 9, 5018.	5.8	86
133	Neandertal Introgression Sheds Light on Modern Human Endocranial Globularity. Current Biology, 2019, 29, 120-127.e5.	1.8	86
134	Simultaneous precise editing of multiple genes in human cells. Nucleic Acids Research, 2019, 47, e116-e116.	6.5	85
135	Mammoth DNA sequences. Nature, 1994, 370, 333-333.	13.7	83
136	Evidence for Import of a Lysyl-tRNA into Marsupial Mitochondria. Molecular Biology of the Cell, 2001, 12, 2688-2698.	0.9	82
137	Point-of-care bulk testing for SARS-CoV-2 by combining hybridization capture with improved colorimetric LAMP. Nature Communications, 2021, 12, 1467.	5.8	81
138	Nuclear insertion sequences of mitochondrial DNA predominate in hair but not in blood of elephants. Molecular Ecology, 1999, 8, 133-137.	2.0	80
139	Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness. PLoS Biology, 2014, 12, e1001871.	2.6	80
140	Genetic Influences on Brain Gene Expression in Rats Selected for Tameness and Aggression. Genetics, 2014, 198, 1277-1290.	1.2	78
141	A single splice site mutation in human-specific <i>ARHGAP11B</i> causes basal progenitor amplification. Science Advances, 2016, 2, e1601941.	4.7	77
142	A fourth Denisovan individual. Science Advances, 2017, 3, e1700186.	4.7	74
143	Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism. PLoS Biology, 2016, 14, e1002558.	2.6	73

Complete DNA Sequence of the Mitochondrial Genome of the Ascidian Halocynthia roretzi (Chordata,) Tj ETQq0 0 $\frac{0.078}{1.2}$ BT /Overlock 10 To $\frac{10.072}{1.2}$

n

144

#	Article	IF	CITATIONS
145	Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans. Nature Communications, 2014, 5, 3584.	5.8	70
146	Long-Term Balancing Selection in LAD1 Maintains a Missense Trans-Species Polymorphism in Humans, Chimpanzees, and Bonobos. Molecular Biology and Evolution, 2015, 32, 1186-1196.	3.5	70
147	The diverse origins of the human gene pool. Nature Reviews Genetics, 2015, 16, 313-314.	7.7	70
148	Mitochondrial DNA of an Iberian Neandertal suggests a population affinity with other European Neandertals. Current Biology, 2006, 16, R629-R630.	1.8	68
149	Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave. Nature, 2021, 595, 399-403.	13.7	67
150	A Molecular Phylogeny of Two Extinct Sloths. Molecular Phylogenetics and Evolution, 2001, 18, 94-103.	1.2	63
151	Intergenic and Repeat Transcription in Human, Chimpanzee and Macaque Brains Measured by RNA-Seq. PLoS Computational Biology, 2010, 6, e1000843.	1.5	62
152	Complete Mitochondrial Genomes Reveal Neolithic Expansion into Europe. PLoS ONE, 2012, 7, e32473.	1.1	61
153	Primate iPS cells as tools for evolutionary analyses. Stem Cell Research, 2014, 12, 622-629.	0.3	61
154	Lipidome determinants of maximal lifespan in mammals. Scientific Reports, 2017, 7, 5.	1.6	60
155	Differences in DNA methylation patterns between humans and chimpanzees. Current Biology, 2004, 14, R148-R149.	1.8	58
156	Denisovan ancestry and population history of early East Asians. Science, 2020, 370, 579-583.	6.0	57
157	RNA editing in metazoan mitochondria: staying fit without sex. FEBS Letters, 1997, 409, 320-324.	1.3	52
158	Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. Science Advances, 2019, 5, eaaw5873.	4.7	52
159	The Y chromosome and the origin of all of us (men). Science, 1995, 268, 1141-1142.	6.0	51
160	Linkage Disequilibrium Extends Across Putative Selected Sites in FOXP2. Molecular Biology and Evolution, 2009, 26, 2181-2184.	3.5	51
161	Positive selection on gene expression in the human brain. Current Biology, 2006, 16, R356-R358.	1.8	50
162	Human and Chimpanzee Gene Expression Differences Replicated in Mice Fed Different Diets. PLoS ONE, 2008, 3, e1504.	1.1	41

#	Article	IF	CITATIONS
163	Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	41
164	Optimization of 454 sequencing library preparation from small amounts of DNA permits sequence determination of both DNA strands. BioTechniques, 2009, 46, 51-57.	0.8	40
165	Compound-specific radiocarbon dating and mitochondrial DNA analysis of the Pleistocene hominin from Salkhit Mongolia. Nature Communications, 2019, 10, 274.	5.8	39
166	Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes. PLoS ONE, 2012, 7, e32877.	1.1	38
167	The Neandertal Progesterone Receptor. Molecular Biology and Evolution, 2020, 37, 2655-2660.	3 . 5	38
168	Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nature Communications, 2022, 13, 489.	5.8	35
169	A Neanderthal Sodium Channel Increases Pain Sensitivity in Present-Day Humans. Current Biology, 2020, 30, 3465-3469.e4.	1.8	33
170	Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes. Glia, 2017, 65, 474-488.	2.5	30
171	A genetic analysis of the Gibraltar Neanderthals. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15610-15615.	3.3	30
172	Extreme Sequence Heteroplasmy in Bat Mitochondrial DNA. Biological Chemistry Hoppe-Seyler, 1996, 377, 661-668.	1.4	29
173	Mice carrying a human <i>GLUD2</i> gene recapitulate aspects of human transcriptome and metabolome development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5358-5363.	3.3	28
174	Changes in Lipidome Composition during Brain Development in Humans, Chimpanzees, and Macaque Monkeys. Molecular Biology and Evolution, 2017, 34, 1155-1166.	3.5	28
175	Identification of Putative Target Genes of the Transcription Factor RUNX2. PLoS ONE, 2013, 8, e83218.	1.1	27
176	Genetic Time Travel. Genetics, 2016, 203, 9-12.	1.2	23
177	Human evolution. Trends in Cell Biology, 1999, 9, M13-M16.	3.6	22
178	Primer Extension Capture: Targeted Sequence Retrieval from Heavily Degraded DNA Sources. Journal of Visualized Experiments, 2009, , 1573.	0.2	22
179	Evolutionary fixation of RNA editing. Nature, 1996, 383, 225-225.	13.7	19
180	Functional analysis of human and chimpanzee promoters. Genome Biology, 2005, 6, R57.	13.9	19

#	Article	IF	Citations
181	Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes. Diabetologia, 2016, 59, 1702-1713.	2.9	19
182	Functional Analyses of Transcription Factor Binding Sites that Differ between Present-Day and Archaic Humans. Molecular Biology and Evolution, 2016, 33, 316-322.	3.5	19
183	Direct radiocarbon dating and DNA analysis of the Darra-i-Kur (Afghanistan) human temporal bone. Journal of Human Evolution, 2017, 107, 86-93.	1.3	19
184	Comment on "Reintroduction of the archaic variant of <i>NOVA1</i> in cortical organoids alters neurodevelopment― Science, 2021, 374, eabi6060.	6.0	19
185	The earliest Denisovans and their cultural adaptation. Nature Ecology and Evolution, 2022, 6, 28-35.	3.4	19
186	Human Stem Cell Resources Are an Inroad to Neandertal DNA Functions. Stem Cell Reports, 2020, 15, 214-225.	2.3	18
187	Human evolution. Trends in Genetics, 1999, 15, M13-M16.	2.9	16
188	The Predecessors Within Cell, 2018, 173, 6-7.	13.5	14
189	Reduced purine biosynthesis in humans after their divergence from Neandertals. ELife, 2021, 10, .	2.8	12
190	A direct RT-qPCR approach to test large numbers of individuals for SARS-CoV-2. PLoS ONE, 2020, 15, e0244824.	1.1	12
191	The evolutionary history of human spindle genes includes back-and-forth gene flow with Neandertals. ELife, $0,11,.$	2.8	12
192	Neandertals. Current Biology, 2006, 16, R113-R114.	1.8	10
193	Recreating the Past by PCR., 1994, , 257-264.		10
194	FINDER project: collagen fingerprinting (ZooMS) for the identification of new human fossils. Antiquity, 2019, 93, .	0.5	8
195	Analysis of Candidate Genes for Lineage-Specific Expression Changes in Humans and Primates. Journal of Proteome Research, 2014, 13, 3596-3606.	1.8	7
196	Neandertal Genetics. Science, 1997, 277, 1021-1025.	6.0	7
197	Lineage-Specific Changes in Biomarkers in Great Apes and Humans. PLoS ONE, 2015, 10, e0134548.	1.1	7
198	The clinically relevant CYP2C8*3 and CYP2C9*2 haplotype is inherited from Neandertals. Pharmacogenomics Journal, 2022, 22, 247-249.	0.9	7

#	Article	IF	Citations
199	Molecular comparison of Neanderthal and Modern Human adenylosuccinate lyase. Scientific Reports, 2018, 8, 18008.	1.6	6
200	Human evolution. Trends in Biochemical Sciences, 1999, 24, M13-M16.	3.7	5
201	A substitution in the glutathione reductase lowers electron leakage and inflammation in modern humans. Science Advances, 2022, 8, eabm1148.	4.7	5
202	A Comprehensive Functional Analysis of Ancestral Human Signal Peptides. Molecular Biology and Evolution, 2011, 28, 25-28.	3.5	4
203	No Evidence of Neandertal mtDNA Contribution to Early Modern Humans. , 2006, , 491-503.		4
204	Chance marsupial relationships. Nature, 1990, 345, 394-394.	13.7	3
205	The contribution of ancient hominin genomes from Siberia to our understanding of human evolution. Herald of the Russian Academy of Sciences, 2015, 85, 392-396.	0.2	2
206	A functional test of Neandertal and modern human mitochondrial targeting sequences. Biochemical and Biophysical Research Communications, 2010, 402, 747-749.	1.0	1
207	The eternal molecule., 2003,, 82-139.		0
208	Analyses moléculaires de la spécificité humaine. , 2006, , 27-36.		0
209	A direct RT-qPCR approach to test large numbers of individuals for SARS-CoV-2. , 2020, 15, e0244824.		0
210	A direct RT-qPCR approach to test large numbers of individuals for SARS-CoV-2., 2020, 15, e0244824.		0
211	A direct RT-qPCR approach to test large numbers of individuals for SARS-CoV-2., 2020, 15, e0244824.		0
212	A direct RT-qPCR approach to test large numbers of individuals for SARS-CoV-2., 2020, 15, e0244824.		0
213	A direct RT-qPCR approach to test large numbers of individuals for SARS-CoV-2., 2020, 15, e0244824.		0
214	A direct RT-qPCR approach to test large numbers of individuals for SARS-CoV-2., 2020, 15, e0244824.		0