Shihui Wen

List of Publications by Citations

Source: https://exaly.com/author-pdf/4631463/shihui-wen-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

76
papers5,003
citations35
h-index70
g-index91
ext. papers5,855
ext. citations9.8
avg, IF5.67
L-index

#	Paper	IF	Citations
76	Advances in highly doped upconversion nanoparticles. <i>Nature Communications</i> , 2018 , 9, 2415	17.4	502
75	Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. <i>Nature</i> , 2017 , 543, 229-233	50.4	473
74	Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 1722-31	9.5	237
73	Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. <i>Biomaterials</i> , 2013 , 34, 1570-80	15.6	222
72	Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. <i>Biomaterials</i> , 2013 , 34, 1402-12	15.6	207
71	Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. <i>Nature Communications</i> , 2016 , 7, 10254	17.4	205
70	Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. <i>Biomaterials</i> , 2013 , 34, 5200-9	15.6	194
69	Activation of the surface dark-layer to enhance upconversion in a thermal field. <i>Nature Photonics</i> , 2018 , 12, 154-158	33.9	174
68	Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. <i>Biomaterials</i> , 2014 , 35, 7635-46	15.6	158
67	Laponite nanodisks as an efficient platform for Doxorubicin delivery to cancer cells. <i>Langmuir</i> , 2013 , 29, 5030-6	4	145
66	Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15110		120
65	Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Applied Materials & amp; Interfaces, 2014, 6, 16416	5 ⁹ 25	116
64	Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. <i>Analytical Chemistry</i> , 2015 , 87, 3949-56	7.8	111
63	Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. <i>ACS Applied Materials & Damp; Interfaces</i> , 2014 , 6, 6944-53	9.5	107
62	Dendrimer-Assisted Formation of Fe3O4/Au Nanocomposite Particles for Targeted Dual Mode CT/MR Imaging of Tumors. <i>Small</i> , 2015 , 11, 4584-93	11	107
61	Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. <i>ACS Applied Materials & Discrete Materials & Disc</i>	9.5	94
60	Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nature Communications, 2018, 9, 3290	17.4	92

(2016-2018)

59	Microscopic inspection and tracking of single upconversion nanoparticles in living cells. <i>Light: Science and Applications</i> , 2018 , 7, 18007	16.7	92
58	Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. <i>Advanced Healthcare Materials</i> , 2013 , 2, 1267-76	10.1	89
57	Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. <i>Chemistry - A European Journal</i> , 2013 , 19, 6409-16	4.8	86
56	Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. <i>Carbohydrate Research</i> , 2015 , 405, 70-7	2.9	78
55	Future and challenges for hybrid upconversion nanosystems. <i>Nature Photonics</i> , 2019 , 13, 828-838	33.9	73
54	Quantitative Lateral Flow Strip Sensor Using Highly Doped Upconversion Nanoparticles. <i>Analytical Chemistry</i> , 2018 , 90, 12356-12360	7.8	65
53	Construction of polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors: an innovative theranostic strategy. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4216-4	278	64
52	Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7410-7418	7.3	61
51	Synthesis of polyethyleneimine-stabilized gold nanoparticles for colorimetric sensing of heparin. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 419, 80-86	5.1	60
50	Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility. Journal of Applied Polymer Science, 2013 , 128, 3807-3813	2.9	60
49	Facile hydrothermal synthesis of low generation dendrimer-stabilized gold nanoparticles for in vivo computed tomography imaging applications. <i>Polymer Chemistry</i> , 2013 , 4, 1788	4.9	53
48	Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer. <i>International Journal of Nanomedicine</i> , 2013 , 8, 2589-600	7.3	53
47	Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications. <i>Biomaterials Science</i> , 2013 , 1, 1172-1180	7.4	50
46	Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. <i>International Journal of Nanomedicine</i> , 2011 , 6, 3449-59	7.3	49
45	Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles <i>RSC Advances</i> , 2018 , 8, 4842-4849	3.7	46
44	Enhanced in vivo antitumor efficacy of doxorubicin encapsulated within laponite nanodisks. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 12328-34	9.5	46
43	Effect of surface charge of polyethyleneimine-modified multiwalled carbon nanotubes on the improvement of polymerase chain reaction. <i>Nanoscale</i> , 2011 , 3, 1741-7	7.7	45
42	Probing the Interior Crystal Quality in the Development of More Efficient and Smaller Upconversion Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3252-8	6.4	35

41	A promising dual mode SPECT/CT imaging platform based on Tc-labeled multifunctional dendrimer-entrapped gold nanoparticles. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 3810-3815	7.3	34	
40	Dendrimer-stabilized silver nanoparticles enable efficient colorimetric sensing of mercury ions in aqueous solution. <i>Analytical Methods</i> , 2013 , 5, 5486	3.2	34	
39	Enhancing the specificity and efficiency of polymerase chain reaction using polyethyleneimine-based derivatives and hybrid nanocomposites. <i>International Journal of Nanomedicine</i> , 2012 , 7, 1069-78	7:3	34	
38	Multifunctional PEGylated multiwalled carbon nanotubes for enhanced blood pool and tumor MR imaging. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1568-77, 1525	10.1	33	
37	Ultrastable polyethyleneimine-stabilized gold nanoparticles modified with polyethylene glycol for blood pool, lymph node and tumor CT imaging. <i>Nanoscale</i> , 2016 , 8, 5567-77	7.7	32	
36	Anisotropic functionalization of upconversion nanoparticles. <i>Chemical Science</i> , 2018 , 9, 4352-4358	9.4	31	
35	Exonuclease III-Assisted Upconversion Resonance Energy Transfer in a Wash-Free Suspension DNA Assay. <i>Analytical Chemistry</i> , 2018 , 90, 663-668	7.8	31	
34	Partially Acetylated Dendrimer-Entrapped Gold Nanoparticles with Reduced Cytotoxicity for Gene Delivery Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 4094-105	1.3	28	
33	Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. <i>Coordination Chemistry Reviews</i> , 2021 , 429, 213642	23.2	26	
32	Selective removal of mercury ions using thymine-grafted electrospun polymer nanofibers. <i>New Journal of Chemistry</i> , 2014 , 38, 1533-1539	3.6	25	
31	Facile synthesis of acetylated dendrimer-entrapped gold nanoparticles with enhanced gold loading for CT imaging applications. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2773-2780	7-3	21	
30	Doxorubicin-loaded poly(lactic-co-glycolic acid) hollow microcapsules for targeted drug delivery to cancer cells. <i>New Journal of Chemistry</i> , 2014 , 38, 3917-3924	3.6	20	
29	Upconversion Nonlinear Structured Illumination Microscopy. <i>Nano Letters</i> , 2020 , 20, 4775-4781	11.5	19	
28	Targeted CT/MR dual mode imaging of human hepatocellular carcinoma using lactobionic acid-modified polyethyleneimine-entrapped gold nanoparticles. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 2395-2401	7-3	18	
27	Super-Resolution Mapping of Single Nanoparticles inside Tumor Spheroids. <i>Small</i> , 2020 , 16, e1905572	11	18	
26	Optimising passivation shell thickness of single upconversion nanoparticles using a time-resolved spectrometer. <i>APL Photonics</i> , 2019 , 4, 026104	5.2	18	
25	Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. <i>Nature Nanotechnology</i> , 2021 , 16, 531-537	28.7	18	
24	One-step Conjugation of Glycyrrhetinic Acid to Cationic Polymers for High-performance Gene Delivery to Cultured Liver Cell. <i>Scientific Reports</i> , 2016 , 6, 21891	4.9	16	

(2021-2015)

Facile Synthesis of Gd(OH)3-Doped Fe3O4 Nanoparticles for Dual-Mode T1- and T2-Weighted Magnetic Resonance Imaging Applications. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 934-	943	16	
Bispecific Antibody-Functionalized Upconversion Nanoprobe. <i>Analytical Chemistry</i> , 2018 , 90, 3024-3029	7.8	15	
Tc-labelled multifunctional polyethylenimine-entrapped gold nanoparticles for dual mode SPECT and CT imaging. <i>Artificial Cells, Nanomedicine and Biotechnology</i> , 2018 , 46, 488-498	6.1	15	
AIEgen based poly(L-lactic-co-glycolic acid) magnetic nanoparticles to localize cytokine VEGF for early cancer diagnosis and photothermal therapy. <i>Nanomedicine</i> , 2019 , 14, 1191-1201	5.6	13	
Sub-10 nm NaNdF4 Nanoparticles as Near-Infrared Photothermal Probes with Self-Temperature Feedback. <i>ACS Applied Nano Materials</i> , 2020 , 3, 2517-2526	5.6	13	
Nanorods with multidimensional optical information beyond the diffraction limit. <i>Nature Communications</i> , 2020 , 11, 6047	17.4	12	
Dendrimer-entrapped metal colloids as imaging agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015 , 7, 678-90	9.2	11	
Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. <i>Nanoscale</i> , 2020 , 12, 18595-18599	7.7	9	
Enhanced energy transfer in heterogeneous nanocrystals for near infrared upconversion photocurrent generation. <i>Nanoscale</i> , 2017 , 9, 18661-18667	7.7	9	
PLGA Hollow Microbubbles Loaded with Iron Oxide Nanoparticles and Doxorubicin for Dual-mode US/MR Imaging and Drug Delivery. <i>Current Nanoscience</i> , 2014 , 10, 543-552	1.4	9	
One-Step Loading of Gold and GdO Nanoparticles within PEGylated Polyethylenimine for Dual Mode Computed Tomography/Magnetic Resonance Imaging of Tumors <i>ACS Applied Bio Materials</i> , 2018 , 1, 221-225	4.1	7	
DNA-mediated anisotropic silica coating of upconversion nanoparticles. <i>Chemical Communications</i> , 2018 , 54, 7183-7186	5.8	5	
Enhancing Hybrid Upconversion Nanosystems via Synergistic Effects of Moiety Engineered NIR Dyes. <i>Nano Letters</i> , 2021 , 21, 9862-9868	11.5	5	
Encapsulation of doxorubicin within lactobionic acid-modified multifunctional poly(amidoamine) dendrimers for targeted therapy of liver cancer cells. <i>Journal of Controlled Release</i> , 2015 , 213, e31-2	11.7	4	
Axial localization and tracking of self-interference nanoparticles by lateral point spread functions. <i>Nature Communications</i> , 2021 , 12, 2019	17.4	4	
Stable and Highly Efficient Antibody-Nanoparticles Conjugation. <i>Bioconjugate Chemistry</i> , 2021 , 32, 1146	5-1.1,55	4	
Highly Doped Upconversion Nanoparticles for Applications Under Mild Excitation Power. <i>Analytical Chemistry</i> , 2020 , 92, 10913-10919	7.8	3	
Reconstructing the Surface Structure of NaREF4 Upconversion Nanocrystals with a Novel K+ Treatment. <i>Chemistry of Materials</i> , 2021 , 33, 2548-2556	9.6	3	
	Magnetic Resonance Imaging Applications. Particle and Particle Systems Characterization, 2015, 32, 934- Bispecific Antibody-Functionalized Upconversion Nanoprobe. Analytical Chemistry, 2018, 90, 3024-3029 Tc-labelled multifunctional polyethylenimine-entrapped gold nanoparticles for dual mode SPECT and CT imaging. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 488-498 AlEgen based poly(L-lactic-co-glycolic acid) magnetic nanoparticles to localize cytokine VEGF for early cancer diagnosis and photothermal therapy. Nanomedicine, 2019, 14, 1191-1201 Sub-10 nm NaNdF4 Nanoparticles as Near-Infrared Photothermal Probes with Self-Temperature Feedback. ACS Applied Nano Materials, 2020, 3, 2517-2526 Nanorods with multidimensional optical information beyond the diffraction limit. Nature Communications, 2020, 11, 6047 Dendrimer-entrapped metal colloids as imaging agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 678-90 Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. Nanoscale, 2020, 12, 18595-18599 Enhanced energy transfer in heterogeneous nanocrystals for near infrared upconversion photocurrent generation. Nanoscale, 2017, 9, 18661-18667 PLGA Hollow Microbubbles Loaded with Iron Oxide Nanoparticles and Doxorubicin for Dual-mode US/MR Imaging and Drug Delivery. Current Nanoscience, 2014, 10, 543-552 One-Step Loading of Gold and GdO Nanoparticles within PEGylated Polyethylenimine for Dual Mode Computed Tomography/Magnetic Resonance Imaging of Tumors ACS Applied Bio Materials, 2018, 1, 221-225 DNA-mediated anisotropic silica coating of upconversion nanoparticles. Chemical Communications, 2018, 54, 7183-7186 Enhancing Hybrid Upconversion Nanosystems via Synergistic Effects of Moiety Engineered NIR Dyes. Nano Letters, 2021, 21, 9862-9868 Encapsulation of doxorubicin within lactobionic acid-modified multifunctional poly(amidoamine) dendrimers for targeted therapy of liver cancer cells. Journal of Controlled Release, 2015, 213, e31-	Magnetic Resonance Imaging Applications. Particle and Particle Systems Characterization, 2015, 32, 934-943 Bispecific Antibody-Functionalized Upconversion Nanoprobe. Analytical Chemistry, 2018, 90, 3024-3029 7.8 Tc-labelled multifunctional polyethylenimine-entrapped gold nanoparticles for dual mode SPECT and CT imaging. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 488-498 AlEgen based poly(L-lactic-co-glycolic acid) magnetic nanoparticles to localize cytokine VEGF for early cancer diagnosis and photothermal therapy. Nanomedicine, 2019, 14, 1191-1201 56 Sub-10 nm NaNdF4 Nanoparticles as Near-Infrared Photothermal Probes with Self-Temperature Feedback. ACS Applied Nano Materials, 2020, 3, 2517-2526 Nanorods with multidimensional optical information beyond the diffraction limit. Nature Communications, 2020, 11, 6047 Dendrimer-entrapped metal colloids as imaging agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 678-90 Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. Nanoscale, 2020, 12, 18595-18599 Thanced energy transfer in heterogeneous nanocrystals for near infrared upconversion photocurrent generation. Nanoscale, 2017, 9, 18661-18667 PLCA Hollow Microbubbles Loaded with Iron Oxide Nanoparticles and Doxorubicin for Dual-mode US/MR Imaging and Drug Delivery. Current Nanoscience, 2014, 10, 543-552 One-Step Loading of Gold and GdO Nanoparticles within PEGylated Polyethylenimine for Dual-mode Computed Tomography/Magnetic Resonance Imaging of Tumors. ACS Applied Bio Materials, 2018, 1, 221-225 DNA-mediated anisotropic silica coating of upconversion nanoparticles. Chemical Communications, 2018, 54, 7183-7186 Enhancing Hybrid Upconversion Nanosystems via Synergistic Effects of Moiety Engineered NIR Dyes. Nano Letters, 2021, 21, 9862-9868 Encapsulation of doxorubicin within lactobionic acid-modified multifunctional poly(amidoamine) dendrimers for targeted therapy of liver cancer cells. Journal of Controlled Re	Magnetic Resonance Imaging Applications. Particle and Particle Systems Characterization, 2015, 32, 934-945 15 Bispecific Antibody-Functionalized Upconversion Nanoprobe. Analytical Chemistry, 2018, 90, 3024-3029 7.8 15 Tc-labelled multifunctional polyethylenimine-entrapped gold nanoparticles for dual mode SPECT and CT imaging. Artificial Cells. Nanomedicine and Biotechnology, 2018, 46, 488-498 61. 15 AllEgen based poly(L-lactic-co-glycolic acid) magnetic nanoparticles to localize cytokine VEGF for early cancer diagnosis and photothermal therapy. Nanomedicine, 2019, 14, 1191-1201 56. 13 Sub-10 nm NaNdF4 Nanoparticles as Near-Infrared Photothermal Probes with Self-Temperature Feedback. ACS Applied Nano Materials, 2020, 3, 2517-2526 Nanorods with multidimensional optical information beyond the diffraction limit. Nature Communications, 2020, 11, 6047 Dendrimer-entrapped metal colloids as imaging agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 678-90 Pudeo-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. 77 9 Enhanced energy transfer in heterogeneous nanocrystals for near infrared upconversion photocurrent generation. Nanoscale, 2017, 9, 18661-18667 PLGA Hollow Microbubbles Loaded with Iron Oxide Nanoparticles and Doxorubicin for Dual-mode US/MR Imaging and Drug Delivery. Current Nanoscance, 2014, 10, 543-552 One-Step Loading of Gold and GdO Nanoparticles within PEGylated Polyethylenimine for Dual-mode Computed Tomography/Magnetic Resonance Imaging of Tumors. ACS Applied Bio Materials, 2018, 1, 221-225 DNA-mediated anisotropic silica coating of upconversion nanoparticles. Chemical Communications, 288 Encapsulation of doxorubicin within lactobionic acid-modified multifunctional poly(amidoamine) tending response to targeted therapy of liver cancer cells. Journal of Controlled Release, 2015, 213, e31-2 Target 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,

5	Optimizing the Polymer Cloak for Upconverting Nanoparticles: An Evaluation of Bioactivity and Optical Performance. <i>ACS Applied Materials & Description</i> (1988) 13, 16142-16154	9.5	3
4	Upconversion nanoparticle-assisted single-molecule assay for detecting circulating antigens of aggressive prostate cancer. <i>Cytometry Part A: the Journal of the International Society for Analytical Cytology</i> , 2021 ,	4.6	2
3	Iron Oxide Nanoparticles: Facile Synthesis of Gd(OH)3-Doped Fe3O4 Nanoparticles for Dual-Mode T1- and T2-Weighted Magnetic Resonance Imaging Applications (Part. Part. Syst. Charact. 10/2015). <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 918-918	3.1	1
2	Cancer Spheroids: Super-Resolution Mapping of Single Nanoparticles inside Tumor Spheroids (Small 6/2020). <i>Small</i> , 2020 , 16, 2070030	11	
1	Disease Diagnosis: Multifunctional PEGylated Multiwalled Carbon Nanotubes for Enhanced Blood Pool and Tumor MR Imaging (Adv. Healthcare Mater. 10/2014). <i>Advanced Healthcare Materials</i> , 2014 . 3, 1522-1522	10.1	