
Prashant S Alegaonkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4631330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Xâ€band Scattering Characteristics of Nickel/Nanocarbon Composites for Antiâ€tracking Application. ChemNanoMat, 2022, 8, .	2.8	2
2	Microwave scattering parameters of ferro–nanocarbon composites for tracking range countermeasures. Materials Advances, 2022, 3, 1660-1672.	5.4	6
3	Microwave scattering behaviour of carbon black/ molybdenum di sulphide /cobalt composite for electromagnetic interference shielding application. Materials Chemistry and Physics, 2022, 279, 125766.	4.0	4
4	Synergistically modified WS ₂ @PANI binary nanocomposite-based all-solid-state symmetric supercapacitor with high energy density. New Journal of Chemistry, 2022, 46, 7043-7054.	2.8	15
5	Tellurium nanostructures for optoelectronic applications. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	6
6	MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications. Surfaces, 2022, 5, 1-36.	2.3	25
7	Shock wave hydrodynamics of nano-carbons. Materials Chemistry and Physics, 2021, 263, 124337.	4.0	4
8	High-performance supercapacitor based on MoS2@TiO2 composite for wide range temperature application. Journal of Alloys and Compounds, 2021, 883, 160705.	5.5	35
9	High Speed Projectile Sensor: Design, Development and System Engineering. IEEE Sensors Journal, 2021, 21, 27062-27068.	4.7	5
10	Blast mitigation properties of porous nano-carbon. Diamond and Related Materials, 2021, 120, 108691.	3.9	3
11	Surface Interactions of Transonic Shock Waves with Graphene-Like Nanoribbons. Surfaces, 2020, 3, 505-515.	2.3	6
12	Study of electrochemical parameters of carbon-nano-spheres/polyaniline nano-composite. AIP Conference Proceedings, 2020, , .	0.4	1
13	Electrochemical performance of a self-assembled two-dimensional heterostructure of rGO/MoS ₂ /h-BN. Nanoscale Advances, 2020, 2, 1531-1541.	4.6	5
14	Thermo-physical Properties and Combustion Wave Aspects of RDX Contain Low Aluminium Composite Propellant. Combustion and Flame, 2020, 218, 12-17.	5.2	9
15	Tellurium-reduced graphene oxide two-dimensional (2D) architecture for efficient photo-catalytic effluent: Solution for industrial water waste. Diamond and Related Materials, 2020, 108, 107994.	3.9	5
16	Propellant Combustion Wave Studies by Embedded Thermocouple and Imaging Method at Ambient Pressure. Journal of Aerospace Technology and Management, 2020, , .	0.3	1
17	Effect of rocket propulsion exhaust on thermophysical properties of graphite nozzle. AIP Conference Proceedings, 2019, , .	0.4	1
18	Synthesis and characterization of graphene like nano flakes(GNF) using chemical vapor deposition. AIP Conference Proceedings, 2019, , .	0.4	1

#	Article	IF	CITATIONS
19	Synthesis and characterization of graphene-like nano ribbons (GNR) using chemical vapor deposition for shock absorbent application. AIP Conference Proceedings, 2019, , .	0.4	2
20	Nanocarbons: Preparation, assessments, and applications in structural engineering, spintronics, gas sensing, EMI shielding, and cloaking in X-band. , 2019, , 171-285.		12
21	Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chemical Engineering Journal, 2019, 374, 144-154.	12.7	75
22	Multiwalled Carbon Nanotubes Decorated with Fe ₃ O ₄ Nanoparticles for Efficacious Doxycycline Delivery. ACS Applied Nano Materials, 2019, 2, 607-616.	5.0	18
23	Experimental and theoretical study of Tetrakis(dimethylamino)ethylene induced magnetism in otherwise nonmagnetic graphene derivatives. Materials Chemistry and Physics, 2019, 222, 132-138.	4.0	7
24	Mitigation of Blast Induced Acceleration using open cell natural rubber and Synthetic Foam. Defence Science Journal, 2019, 69, 53-57.	0.8	6
25	Preparation and performance evaluation of Carbon-Nano-Sphere for electrode double layer capacitor. Applied Surface Science, 2018, 449, 500-506.	6.1	9
26	Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly(methyl) Tj ETQq0 0 0 rgB	T Overloo 2.6	:k 10 Tf 50 4
27	Enhanced response and improved selectivity for toxic gases with functionalized CNT thin film resistors. Integrated Ferroelectrics, 2018, 186, 65-70.	0.7	7
28	Assessment of ecologically prepared carbon-nano-spheres for fabrication of flexible and durable supercell devices. Journal of Materials Chemistry A, 2018, 6, 7246-7256.	10.3	20
29	Ferro-nano-carbon split ring resonators a bianisotropic metamaterial in X-band: Constitutive parameters analysis. Materials Chemistry and Physics, 2018, 205, 366-375.	4.0	15
30	Experimental Study of Blast Wave Mitigation in Open Cell Foams. Materials Today: Proceedings, 2018, 5, 28170-28179.	1.8	6
31	Investigation of Disorder in Mixed Phase, <i>sp</i> ² – <i>sp</i> ³ Bonded Graphene-Like Nanocarbon. Journal of Nanoscience and Nanotechnology, 2018, 18, 2504-2512.	0.9	0
32	High performance tellurium-reduced graphene oxide pseudocapacitor electrodes. Electrochimica Acta, 2018, 291, 225-233.	5.2	13
33	Graphene-Like Nanoflakes for Shock Absorption Applications. ACS Applied Nano Materials, 2018, 1, 6027-6037.	5.0	33
34	Electrical characteristics of etched ion-tracks in polyimide filled with silver nanoparticles. Radiation Effects and Defects in Solids, 2018, 173, 617-628.	1.2	0
35	Spin dynamics in graphene-like nanocarbon, graphene and their nitrogen adatom derivatives. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	0

36Enhanced microwave absorption property of Reduced Graphene Oxide (RGO)â€"Strontium Hexaferrite
(SF)/Poly (Vinylidene) Fluoride (PVDF). Diamond and Related Materials, 2018, 89, 28-34.3.930

PRASHANT S ALEGAONKAR

#	Article	IF	CITATIONS
37	Exploring molecular and spin interactions of Tellurium adatom in reduced graphene oxide. Materials Chemistry and Physics, 2017, 195, 82-87.	4.0	6
38	Study of Blast Wave Pressure Modification through Rubber Foam. Procedia Engineering, 2017, 173, 570-576.	1.2	13
39	Effect of film thickness on gas sensing properties of sprayed WO ₃ thin films. New Journal of Chemistry, 2017, 41, 11807-11816.	2.8	47
40	The interactions between CdTe quantum dots and proteins: understanding nano-bio interface. AIMS Materials Science, 2017, 4, 209-222.	1.4	14
41	Graphene-like nanocarbon: An effective nanofiller for improving the mechanical and thermal properties of polymer at low weight fractions. Composites Science and Technology, 2016, 127, 79-87.	7.8	35
42	Nano-carbon: preparation, assessment, and applications for NH ₃ gas sensor and electromagnetic interference shielding. RSC Advances, 2016, 6, 97266-97275.	3.6	32
43	Decoration of gold nanoparticles on thin multiwall carbon nanotubes and their use as a glucose sensor. Materials Research Express, 2016, 3, 035008.	1.6	4
44	Influence of fuel to oxidizer ratio on LPG sensing performance of MgFe2O4 nanoparticles. Materials Chemistry and Physics, 2015, 161, 135-141.	4.0	45
45	Impressive Transmission Mode Electromagnetic Interference Shielding Parameters of Graphene-like Nanocarbon/Polyurethane Nanocomposites for Short Range Tracking Countermeasures. ACS Applied Materials & Interfaces, 2015, 7, 14833-14842.	8.0	56
46	Exchange Interaction of Itinerant Electron Donors of Tetrakis (Dimethylamino) Ethylene with Localized Electrons in Graphene. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 1477-1482.	0.6	4
47	Electroless nickel coated nano-clay for electrolytic removal of Hg(ii) ions. RSC Advances, 2014, 4, 50614-50623.	3.6	16
48	Spin Transport and Magnetic Correlation Parameters for Graphene-like Nanocarbon Sheets Doped with Nitrogen. Journal of Physical Chemistry C, 2013, 117, 27105-27113.	3.1	19
49	Mixed phase, sp2–sp3 bonded, and disordered few layer graphene-like nanocarbon: Synthesis and characterizations. Applied Surface Science, 2013, 271, 86-92.	6.1	23
50	Graphene nanoribbon–PVA composite as EMI shielding material in the X band. Nanotechnology, 2013, 24, 455705.	2.6	98
51	Field Emission Properties of a Graphene/Polymer Composite. Journal of Nanoscience and Nanotechnology, 2013, 13, 7689-7694.	0.9	2
52	Gold-graphene nanocomposite based ultrasensitive electrochemical glucose sensor. , 2012, , .		0
53	A comparative study of thermionic emission from vertically grown carbon nanotubes and tungsten cathodes. Applied Surface Science, 2011, 257, 10306-10310.	6.1	10
54	A New Method of Carbonâ€Nanotube Patterning Using Reduction Potentials. Advanced Materials, 2009, 21, 1257-1260.	21.0	16

PRASHANT S ALEGAONKAR

#	Article	IF	CITATIONS
55	Improvement of emission reliability of carbon nanotube emitters by electrical conditioning. Thin Solid Films, 2008, 516, 3618-3621.	1.8	7
56	Carbon nanotube composite: Dispersion routes and field emission parameters. Composites Science and Technology, 2008, 68, 753-759.	7.8	40
57	Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon, 2008, 46, 1987-1993.	10.3	99
58	Ion track-based electronic elements. Vacuum, 2008, 82, 900-905.	3.5	24
59	Selective deposition of catalyst nanoparticles using the gravitational force for carbon nanotubes interconnect. Thin Solid Films, 2008, 516, 3534-3537.	1.8	1
60	Multi-barrier layer-mediated growth of carbon nanotubes. Thin Solid Films, 2008, 516, 3646-3650.	1.8	5
61	Electrical ageing of carbon nanotube composite cathode layers. Diamond and Related Materials, 2008, 17, 980-985.	3.9	2
62	Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition. Journal Physics D: Applied Physics, 2008, 41, 155311.	2.8	47
63	Water-assisted synthesis of carbon nanotubes: Acetylene partial pressure and height control. Europhysics Letters, 2008, 81, 38002.	2.0	16
64	Carbon nanoparticles grown in the subsurface-region of porous SiO2. Journal Physics D: Applied Physics, 2007, 40, 3423-3429.	2.8	3
65	Growth of carbon nanotubes: effect of Fe diffusion and oxidation. Philosophical Magazine Letters, 2007, 87, 767-780.	1.2	8
66	Nanoclusters and nanotubes for swift ion track technology. Radiation Effects and Defects in Solids, 2007, 162, 151-156.	1.2	3
67	Formation of buried-layer CNTs in porous SiO2 templates. Diamond and Related Materials, 2007, 16, 326-333.	3.9	6
68	Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films, 2007, 515, 5131-5135.	1.8	191
69	Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films, 2007, 515, 5136-5141.	1.8	133
70	Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning. Diamond and Related Materials, 2006, 15, 1839-1843.	3.9	77
71	Carbon nanotubes growth in AlPO4-5 zeolites: Evidence for density dependent field emission characteristics. Diamond and Related Materials, 2006, 15, 1759-1764.	3.9	6
72	Simple fabrication process of a screen-printed triode-CNT field emitter array. Diamond and Related Materials, 2006, 15, 1855-1858.	3.9	14

PRASHANT S ALEGAONKAR

#	Article	IF	CITATIONS
73	Field enhancement factor for an array of MWNTs in CNT paste. Applied Physics A: Materials Science and Processing, 2006, 83, 377-383.	2.3	39
74	Enhanced field emission properties of thin-multiwalled carbon nanotubes: Role of SiOx coating. Journal of Applied Physics, 2006, 100, 104303.	2.5	21
75	Dielectric constant and surface morphology of the elemental diffused polyimide. Journal Physics D: Applied Physics, 2006, 39, 4855-4859.	2.8	11
76	The growth of carbon nanotubes at the channel ends of the SAPO4-5 zeolite structures. Diamond and Related Materials, 2005, 14, 1876-1881.	3.9	1
77	Effect of MeV electron irradiation on the free volume of polyimide. Radiation Effects and Defects in Solids, 2004, 159, 511-516.	1.2	9
78	The emergence of new ion tract applications. Radiation Measurements, 2003, 36, 605-609.	1.4	28
79	Production parameters for the formation of metallic nanotubules in etched tracks. Radiation Measurements, 2003, 36, 751-755.	1.4	14
80	Dielectric properties of 1 MeV electron-irradiated polyimide. Applied Physics Letters, 2002, 80, 640-642.	3.3	32
81	Studies on Heat Flux Imparted on Thermal Insulation Inside Rocket Motor Containing Double Base Propellant. Journal of Aerospace Technology and Management, 0, , .	0.3	1