
Tamio Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4631229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel AP3B1 mutations in a Hermansky–Pudlak syndrome type2 with neonatal interstitial lung disease. Pediatric Allergy and Immunology, 2022, 33, e13748.	2.6	0
2	Impact of a <i>SLC24A5</i> variant on the retinal pigment epithelium of a Japanese patient with oculocutaneous albinism type 6. Pigment Cell and Melanoma Research, 2022, 35, 212-219.	3.3	3
3	Pulmonary and Intestinal Involvement in a Patient with Myeloperoxidase-specific Antineutrophil Cytoplasmic Antibody-positive Hermansky-Pudlak Syndrome. Internal Medicine, 2022, , .	0.7	0
4	Establishment of a mouse model for postâ€inflammatory hyperpigmentation. Pigment Cell and Melanoma Research, 2021, 34, 101-110.	3.3	7
5	Five novel mutations in SASH1 contribute to lentiginous phenotypes in Japanese families. Pigment Cell and Melanoma Research, 2021, 34, 174-178.	3.3	9
6	Report of two Japanese patients with piebaldism including a novel mutation in <i>KIT</i> . Journal of Dermatology, 2021, 48, e94-e95.	1.2	0
7	Current landscape of Oculocutaneous Albinism in Japan. Pigment Cell and Melanoma Research, 2021, 34, 190-203.	3.3	15
8	Hermansky-Pudlak Syndrome with Acute Hatred Idiopathic Pulmonary Fibrosis: All of the Patients of Oculocutaneous Albinism for Past 20 Years in Juntendo University Hospital. Juntendo Medical Journal, 2021, , .	0.1	0
9	Rhododendrolâ€induced leukoderma update I: Clinical findings and treatment. Journal of Dermatology, 2021, 48, 961-968.	1.2	12
10	IPCC2020—Advancing melanocyte science and friendship in the Land of the Rising Sun. Pigment Cell and Melanoma Research, 2021, 34, 188-189.	3.3	0
11	Rhododendrolâ€induced leukoderma update II: Pathophysiology, mechanisms, risk evaluation, and possible mechanismâ€based treatments in comparison with vitiligo. Journal of Dermatology, 2021, 48, 969-978.	1.2	10
12	Genetics of nonâ€syndromic and syndromic oculocutaneous albinism in human and mouse. Pigment Cell and Melanoma Research, 2021, 34, 786-799.	3.3	25
13	Speckled lentiginous nevus in a patient with Hermansky–Pudlak syndrome type 1. Journal of Dermatology, 2020, 47, e20-e21.	1.2	1
14	Novel <i>AP3B1</i> compound heterozygous mutations in a Japanese patient with Hermansky–Pudlak syndrome type 2. Journal of Dermatology, 2020, 47, 185-189.	1.2	9
15	Expression of discoidin domain receptor 1 and Eâ€cadherin in epidermis affects melanocyte behavior in rhododendrolâ€induced leukoderma mouse model. Journal of Dermatology, 2020, 47, 1330-1334.	1.2	4
16	Immunohistochemical analysis of rhododendrol-induced leukoderma in improved and aggravated cases. Journal of Dermatological Science, 2020, 99, 140-143.	1.9	2
17	Genomeâ€wide association study identifies <i>CDH13</i> as a susceptibility gene for rhododendrolâ€induced leukoderma. Pigment Cell and Melanoma Research, 2020, 33, 826-833.	3.3	5
18	Development and validation of the Vitiligo Extent Score for a Target Area (<scp>VESTA</scp>) to assess the treatment response of a target lesion. Pigment Cell and Melanoma Research, 2019, 32, 315-319.	3.3	11

#	Article	IF	CITATIONS
19	A 4â€bp deletion promoter variant (rs984225803) is associated with mild <scp>OCA</scp> 4 among Japanese patients. Pigment Cell and Melanoma Research, 2019, 32, 79-84.	3.3	6
20	Autoantibodies detected in patients with vitiligo vulgaris but not in those with rhododendrol-induced leukoderma. Journal of Dermatological Science, 2019, 95, 80-83.	1.9	4
21	The Molecular Basis of Chemical Chaperone Therapy for Oculocutaneous Albinism Type 1A. Journal of Investigative Dermatology, 2019, 139, 1143-1149.	0.7	10
22	NGSâ€based targeted resequencing identified rare subtypes of albinism: Providing accurate molecular diagnosis for Japanese patients with albinism. Pigment Cell and Melanoma Research, 2019, 32, 848-853.	3.3	25
23	Consensus and variations in cell line specificity among human metapneumovirus strains. PLoS ONE, 2019, 14, e0215822.	2.5	54
24	Impact of a 4â€bp deletion variant (rs984225803) in the promoter region of <i>SLC45A2</i> on color variation among a Japanese population. Journal of Dermatology, 2019, 46, e295-e296.	1.2	4
25	Janus kinase inhibitor tofacitinib does not facilitate the repigmentation in mouse model of rhododendrolâ€induced vitiligo. Journal of Dermatology, 2019, 46, 548-550.	1.2	3
26	Validation of a physician global assessment tool for vitiligo extent: Results of an international vitiligo expert meeting. Pigment Cell and Melanoma Research, 2019, 32, 728-733.	3.3	10
27	A toddler case of keratosis follicularis squamosa (Dohi) successfully treated with salicylic acid ointment. European Journal of Dermatology, 2019, 29, 544-546.	0.6	1
28	Leukoderma induced by rhododendrol is different from leukoderma of vitiligo in pathogenesis: A novel comparative morphological study. Journal of Cutaneous Pathology, 2019, 46, 123-129.	1.3	8
29	Characterization of melanosomes and melanin in Japanese patients with Hermansky–Pudlak syndrome types 1, 4, 6, and 9. Pigment Cell and Melanoma Research, 2018, 31, 267-276.	3.3	24
30	S-1 induced discoid lupus erythematosus-like lesions and long-term complete response for para-aortic lymph node recurrence of pancreatic ductal adenocarcinoma: a case report. Surgical Case Reports, 2018, 4, 52.	0.6	0
31	Case of antiâ€p200 pemphigoid accompanying uterine malignancy. Journal of Dermatology, 2018, 45, e341-e342.	1.2	7
32	Microsatellite polymorphism located immediately upstream of the phosphatidylinositol glycan, class K gene (PIGK) affects its expression, which correlates with tyrosinase activity in human melanocytes. Journal of Dermatological Science, 2017, 85, 131-134.	1.9	1
33	Efficient isolation of human metapneumovirus using MNTâ€1, a human malignant melanoma cell line with early and distinct cytopathic effects. Microbiology and Immunology, 2017, 61, 497-506.	1.4	7
34	The first nationwide surveillance of antibacterial susceptibility patterns of pathogens isolated from skin and soft-tissue infections in dermatology departments in Japan. Journal of Infection and Chemotherapy, 2017, 23, 503-511.	1.7	21
35	Repigmentation in vitiligo: position paper of the Vitiligo Global Issues Consensus Conference. Pigment Cell and Melanoma Research, 2017, 30, 28-40.	3.3	38
36	Incontinentia pigmenti with retinal vascular anomaly and deletion of exons 4–10 in <i><scp>NEMO</scp></i> . Journal of Dermatology, 2017, 44, 976-977.	1.2	1

#	Article	IF	CITATIONS
37	Melanotic Malignant Melanoma in Oculocutaneous Albinism Type 4. Acta Dermato-Venereologica, 2017, 97, 287-288.	1.3	8
38	Efficient isolation of human parainfluenza viruses 1 and 3 using MNTâ€1, a human malignant melanoma cell line system that exhibits an apparent cytopathic effect. Microbiology and Immunology, 2016, 60, 801-805.	1.4	6
39	Genetic analyses of oculocutaneous albinism types 2 and 4 with eight novel mutations. Journal of Dermatological Science, 2016, 81, 140-142.	1.9	6
40	Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin. Journal of Dermatological Science, 2016, 81, 35-43.	1.9	27
41	Immunohistopathological analysis of frizzled-4-positive immature melanocytes from hair follicles of patients with Rhododenol-induced leukoderma. Journal of Dermatological Science, 2015, 80, 156-158.	1.9	8
42	Guide for medical professionals (i.e. dermatologists) for the management of Rhododenolâ€induced leukoderma. Journal of Dermatology, 2015, 42, 113-128.	1.2	50
43	Case of <scp>H</scp> ermansky– <scp>P</scp> udlak syndrome 1 in a <scp>J</scp> apanese infant. Journal of Dermatology, 2015, 42, 906-907.	1.2	1
44	Mutation analyses of patients with dyschromatosis symmetrica hereditaria: Ten novel mutations of the ADAR1 gene. Journal of Dermatological Science, 2015, 79, 88-90.	1.9	10
45	An immune pathological and ultrastructural skin analysis for rhododenol-induced leukoderma patients. Journal of Dermatological Science, 2015, 77, 185-188.	1.9	31
46	ADAM protease inhibitors reduce melanogenesis by regulating PMEL17 processing in human melanocytes. Journal of Dermatological Science, 2015, 78, 133-142.	1.9	23
47	Hermansky-Pudlak syndrome type 4 with a novel mutation. Journal of Dermatology, 2014, 41, 186-187.	1.2	8
48	Variants in melanogenesisâ€related genes associate with skin cancer risk among <scp>J</scp> apanese populations. Journal of Dermatology, 2014, 41, 296-302.	1.2	13
49	Oculocutaneous albinism (OCA) in Japanese patients: Five novel mutations. Journal of Dermatological Science, 2014, 74, 173-174.	1.9	14
50	Increasing the complexity: new genes and new types of albinism. Pigment Cell and Melanoma Research, 2014, 27, 11-18.	3.3	179
51	Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold. Journal of Dermatological Science, 2014, 76, 16-24.	1.9	48
52	Rhododendrol, a depigmentationâ€inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinaseâ€dependent mechanism. Pigment Cell and Melanoma Research, 2014, 27, 754-763.	3.3	99
53	Depigmentation of the skin induced by 4-(4-hydroxyphenyl)-2-butanol is spontaneously re-pigmented in brown and black guinea pigs. Journal of Toxicological Sciences, 2014, 39, 615-623.	1.5	12
54	Piebaldism. Journal of Dermatology, 2013, 40, 330-335.	1.2	75

#	Article	IF	CITATIONS
55	Association of melanogenesis genes with skin color variation among Japanese females. Journal of Dermatological Science, 2013, 69, 167-172.	1.9	29
56	Patient with dyschromatosis symmetrica hereditaria treated with miniature punch grafting, followed by excimer light therapy. Journal of Dermatology, 2013, 40, 771-772.	1.2	7
57	Dyschromatosis symmetrica hereditaria. Journal of Dermatology, 2013, 40, 336-343.	1.2	62
58	Guidelines for the diagnosis and treatment of vitiligo in Japan. Journal of Dermatology, 2013, 40, 344-354.	1.2	46
59	Expression of midkine in normal human skin, dermatitis and neoplasms: Association with differentiation of keratinocytes. Journal of Dermatology, 2013, 40, 980-986.	1.2	7
60	Eleven novel mutations of the ADAR1 gene in dyschromatosis symmetrica hereditaria. Journal of Dermatological Science, 2012, 66, 244-245.	1.9	8
61	Oculocutaneous albinism type 3: A Japanese girl with novel mutations in TYRP1 gene. Journal of Dermatological Science, 2011, 64, 217-222.	1.9	17
62	Dyschromatosis symmetrica hereditaria with acral hypertrophy. European Journal of Dermatology, 2011, 21, 649-650.	0.6	3
63	Mutation analyses of patients with dyschromatosis symmetrica hereditaria: Five novel mutations of the ADAR1 gene. Journal of Dermatological Science, 2010, 58, 218-220.	1.9	11
64	Oculocutaneous albinism type IV: A boy of Moroccan descent with a novel mutation in <i>SLC45A2</i> . American Journal of Medical Genetics, Part A, 2009, 149A, 1773-1776.	1.2	9
65	Mucinous eccrine naevus. Journal of the European Academy of Dermatology and Venereology, 2009, 23, 348-349.	2.4	5
66	Four novel mutations of the ADAR1 gene in dyschromatosis symmetrica hereditaria. Journal of Dermatological Science, 2009, 53, 76-77.	1.9	18
67	Functional analysis of OCA4 mutant sequences using <i>under white</i> mouse melanocytes. Pigment Cell and Melanoma Research, 2009, 22, 235-237.	3.3	5
68	Six novel mutations of the <i>ADAR1</i> gene in patients with dyschromatosis symmetrica hereditaria: Histological observation and comparison of genotypes and clinical phenotypes. Journal of Dermatology, 2008, 35, 395-406.	1.2	37
69	Dyschromatosis symmetrica hereditaria associated with neurological disorders. Journal of Dermatology, 2008, 35, 662-666.	1.2	43
70	Recent advances in genetic analyses of oculocutaneous albinism types 2 and 4. Journal of Dermatological Science, 2008, 51, 1-9.	1.9	95
71	Ten Novel Mutations of the ADAR1 Gene in Japanese Patients with Dyschromatosis Symmetrica Hereditaria. Journal of Investigative Dermatology, 2007, 127, 309-311.	0.7	32
72	Two novel mutations detected in Japanese patients with oculocutaneous albinism. Journal of Dermatological Science, 2006, 44, 116-118.	1.9	6

#	Article	IF	CITATIONS
73	Oculocutaneous albinism type 4: six novel mutations in the membrane-associated transporter protein gene and their phenotypes. Pigment Cell & Melanoma Research, 2006, 19, 451-453.	3.6	37
74	Dystonia, mental deterioration, and dyschromatosis symmetrica hereditaria in a family withADAR1 mutation. Movement Disorders, 2006, 21, 1510-1513.	3.9	60
75	OCA4: evidence for a founder effect for the p.D157N mutation of the MATP gene in Japanese and Korean. Pigment Cell & Melanoma Research, 2005, 18, 385-388.	3.6	17
76	Mutation Analysis of the ADAR1 Gene in Dyschromatosis Symmetrica Hereditaria and Genetic Differentiation from both Dyschromatosis Universalis Hereditaria and Acropigmentatio Reticularis. Journal of Investigative Dermatology, 2005, 124, 1186-1192.	0.7	80
77	High Frequency of Hermansky–Pudlak Syndrome Type 1 (HPS1) Among Japanese Albinism Patients and Functional Analysis of HPS1 Mutant Protein. Journal of Investigative Dermatology, 2005, 125, 715-720.	0.7	46
78	A Patient with Subclinical Oculocutaneous Albinism Type 2 Diagnosed on Getting Severely Sunburned. Dermatology, 2005, 210, 322-323.	2.1	4
79	Genetics of pigmentary disorders. American Journal of Medical Genetics Part A, 2004, 131C, 75-81.	2.4	134
80	Investigation on the IVS5 +5G → A splice site mutation of HPS1 gene found in Japanese patients with Hermansky–Pudlak syndrome. Journal of Dermatological Science, 2004, 36, 106-108.	1.9	15
81	Oculocutaneous Albinism Type 4 Is One of the Most Common Types of Albinism in Japan. American Journal of Human Genetics, 2004, 74, 466-471.	6.2	135
82	High frequency of the Ala481Thr mutation of the <i>P</i> gene in the Japanese population. American Journal of Medical Genetics Part A, 2003, 118A, 402-403.	2.4	21
83	Six Novel P Gene Mutations and Oculocutaneous Albinism Type 2 Frequency in Japanese Albino Patients. Journal of Investigative Dermatology, 2003, 120, 781-783.	0.7	28
84	Mutations of the RNA-Specific Adenosine Deaminase Gene (DSRAD) Are Involved in Dyschromatosis Symmetrica Hereditaria. American Journal of Human Genetics, 2003, 73, 693-699.	6.2	235
85	The Hermansky-Pudlak Syndrome 1 (HPS1) and HPS4 Proteins Are Components of Two Complexes, BLOC-3 and BLOC-4, Involved in the Biogenesis of Lysosome-related Organelles. Journal of Biological Chemistry, 2003, 278, 20332-20337.	3.4	90
86	The mouse organellar biogenesis mutant buff results from a mutation in Vps33a, a homologue of yeast vps33 and Drosophila carnation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1146-1150.	7.1	117
87	Hermansky-Pudlak syndrome is caused by mutations in HPS4, the human homolog of the mouse light-ear gene. Nature Genetics, 2002, 30, 321-324.	21.4	174
88	The Gene Mutated in Cocoa Mice, Carrying a Defect of Organelle Biogenesis, Is a Homologue of the Human Hermansky–Pudlak Syndrome-3 Gene. Genomics, 2001, 78, 30-37.	2.9	79