List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4631133/publications.pdf Version: 2024-02-01

		147801	102487
112	4,751	31	66
papers	citations	h-index	g-index
127	127	127	3389
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	NHC atalyzed 1,4â€Elimination in the Dearomative Activation of 3â€Furaldehydes towards (4+2) ycloadditions. Advanced Synthesis and Catalysis, 2022, 364, 1434-1439.	4.3	6
2	Differentiating Catalysis in the Dearomative [4 + 2]-Cycloaddition Involving Enals and Heteroaromatic Aldehydes. Organic Letters, 2022, 24, 955-959.	4.6	7
3	Dearomative Michael addition involving enals and 2-nitrobenzofurans realized under NHC-catalysis. Chemical Communications, 2022, 58, 5367-5370.	4.1	7
4	5-Substituted-furan-2(3 <i>H</i>)-ones in [8 + 2]-Cycloaddition with 8,8-Dicyanoheptafulvene. Journal of Organic Chemistry, 2022, 87, 5296-5302.	3.2	7
5	Aminocatalytic Synthesis of Uracil Derivatives Bearing a Bicyclo[2.2.2]octane Scaffold via a Doubly Cycloadditive Reaction Cascade. Synthesis, 2021, 53, 309-317.	2.3	8
6	Enantioselective H-bond-directed vinylogous iminium ion strategy for the functionalization of vinyl-substituted heteroaryl aldehydes. Chemical Communications, 2021, 57, 1667-1670.	4.1	13
7	Hydroxyl-group-activated azomethine ylides in organocatalytic H-bond-assisted 1,3-dipolar cycloadditions and beyond. Organic and Biomolecular Chemistry, 2021, 19, 3075-3086.	2.8	17
8	1,3,4-Thiadiazoles Effectively Inhibit Proliferation of Toxoplasma gondii. Cells, 2021, 10, 1053.	4.1	6
9	The First Application of 1H NMR Spectroscopy for the Assessment of the Authenticity of Perfumes. Molecules, 2021, 26, 3098.	3.8	3
10	Solid-Phase Synthesis of an Insect Pyrokinin Analog Incorporating an Imidazoline Ring as Isosteric Replacement of a trans Peptide Bond. Molecules, 2021, 26, 3271.	3.8	4
11	Asymmetric Dearomative (3+2)-Cycloaddition Involving Nitro-Substituted Benzoheteroarenes under H-Bonding Catalysis. Molecules, 2021, 26, 4992.	3.8	7
12	Remote Functionalization of 4â€(Alkâ€1â€enâ€1â€yl)â€3â€Cyanocoumarins via the Asymmetric Organocatalytic 1,6â€Addition. Advanced Synthesis and Catalysis, 2021, 363, 5116.	4.3	2
13	The Application of NMR Spectroscopy and Chemometrics in Authentication of Spices. Molecules, 2021, 26, 382.	3.8	14
14	Vinylogous hydrazone strategy for the organocatalytic alkylation of heteroaromatic derivatives. Chemical Communications, 2021, 57, 6312-6315.	4.1	3
15	Visible-light synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones <i>via</i> doubly decarboxylative Giese reaction. RSC Advances, 2021, 11, 27782-27786.	3.6	9
16	The Game of Electrons: Organocatalytic Higherâ€Order Cycloadditions Involving Fulvene―and Troponeâ€Derived Systems. Chemistry - A European Journal, 2020, 26, 2120-2132.	3.3	35
17	Asymmetric vinylogous Michael addition of 5-substituted-furan-2(3 <i>H</i>)-ones to an α,β-unsaturated-γ-lactam. Organic and Biomolecular Chemistry, 2020, 18, 8633-8637.	2.8	3
18	Lewis Basic Amine Catalyzed Aza-Michael Reaction of Indole- and Pyrrole-3-carbaldehydes. Synthesis, 2020, 52, 2650-2661.	2.3	10

#	Article	IF	CITATIONS
19	Cyclic 1â€Azadienes in the Organocatalytic Inverseâ€Electronâ€Demand Azaâ€Dielsâ€Alder Cycloadditions. Asian Journal of Organic Chemistry, 2020, 9, 1688-1700.	2.7	20
20	Doubly vinylogous and doubly rearomative functionalization of 2-alkyl-3-furfurals. Organic and Biomolecular Chemistry, 2020, 18, 5816-5821.	2.8	11
21	Frontispiece: The Game of Electrons: Organocatalytic Higherâ€Order Cycloadditions Involving Fulvene― and Troponeâ€Derived Systems. Chemistry - A European Journal, 2020, 26, .	3.3	0
22	Asymmetric Synthesis of [2.2.2]-Bicyclic Lactones via All-Carbon Inverse-Electron-Demand Diels–Alder Reaction. Organic Letters, 2020, 22, 1813-1817.	4.6	15
23	Allylic–Allylic Alkylation with 3,5-Dimethyl-4-nitroisoxazole: A Route to Dicarboxylic Acid Derivatives. Journal of Organic Chemistry, 2020, 85, 2938-2944.	3.2	10
24	The influence of experimental parameters on quantitative deuterium measurements for ethyl alcohols of different origin. Journal of the Science of Food and Agriculture, 2020, 100, 1812-1815.	3.5	0
25	Deconjugatedâ€Ketoneâ€Derived Dienolates in Remote, Stereocontrolled, Aromative <i>aza</i> â€Dielsâ€Alder Cycloaddition. Advanced Synthesis and Catalysis, 2020, 362, 2658-2665.	4.3	20
26	Comparison of quantitative NMR and IRMS for the authentication of â€~Polish Vodka'. Journal of the Science of Food and Agriculture, 2019, 99, 263-268.	3.5	14
27	Unterbrechung der Aromatizitämittels Aminokatalyse: Eine einfache Strategie für die asymmetrische Synthese. Angewandte Chemie, 2019, 131, 64-75.	2.0	15
28	Breaking Aromaticity with Aminocatalysis: A Convenient Strategy for Asymmetric Synthesis. Angewandte Chemie - International Edition, 2019, 58, 63-73.	13.8	56
29	Aromatizative Inverseâ€Electronâ€Demand Heteroâ€Dielsâ€Alder Reaction in the Synthesis of Benzothiophene Derivatives. European Journal of Organic Chemistry, 2019, 2019, 6592-6596.	2.4	16
30	Inverting the reactivity of troponoid systems in enantioselective higher-order cycloaddition. Chemical Communications, 2019, 55, 11675-11678.	4.1	27
31	On the origins of stereoselectivity in the aminocatalytic remote alkylation of 5-alkylfurfurals. Organic and Biomolecular Chemistry, 2019, 17, 6025-6031.	2.8	8
32	2-Substituted 1,4-Naphthoquinones in [6 + 4]-Cycloaddition with 8,8-Dicyanoheptafulvene. Journal of Organic Chemistry, 2019, 84, 9929-9936.	3.2	15
33	Intramolecular [2+2] ycloaddition in the Synthesis of Polycyclic Tetrahydrothiopyran Derivatives Bearing a Cyclobutane Scaffold. Advanced Synthesis and Catalysis, 2019, 361, 2274-2279.	4.3	3
34	Effect of Co-Inoculation with Saccharomyces cerevisiae and Lactic Acid Bacteria on the Content of Propan-2-ol, Acetaldehyde and Weak Acids in Fermented Distillery Mashes. International Journal of Molecular Sciences, 2019, 20, 1659.	4.1	4
35	α,β-Unsaturated butenolides in an organocatalytic doubly annulative cascade for the preparation of 3,4-dihydrocoumarins. Organic and Biomolecular Chemistry, 2019, 17, 2624-2628.	2.8	15
36	Site-Selective and Enantioselective α,β,γ-Functionalization of 5-Alkylidenefuran-2(5 <i>H</i>)-ones: A Route to Polycyclic γ-Lactones. Organic Letters, 2019, 21, 1248-1252.	4.6	6

#	Article	IF	CITATIONS
37	The Role of Saccharomyces cerevisiae Yeast and Lactic Acid Bacteria in the Formation of 2-Propanol from Acetone during Fermentation of Rye Mashes Obtained Using Thermal-Pressure Method of Starch Liberation. Molecules, 2019, 24, 610.	3.8	10
38	Asymmetric Formal Vinylogous Iminium Ion Activation for Vinyl-Substituted Heteroaryl and Aryl Aldehydes. Organic Letters, 2019, 21, 9628-9632.	4.6	27
39	Isothiocyanate Strategy for the Synthesis of Quaternary αâ€Amino Acids Bearing a Spirocyclic Ring System. Advanced Synthesis and Catalysis, 2018, 360, 1822-1832.	4.3	11
40	The Application of 2-Benzyl-1,4-naphthoquinones as Pronucleophiles in Aminocatalytic Synthesis of Tricyclic Derivatives. Journal of Organic Chemistry, 2018, 83, 5019-5026.	3.2	13
41	Vinylogous Nucleophiles Bearing the Endocyclic Double Bond in the Allylic Alkylation with Moritaâ€Baylisâ€Hillman Carbonates. Advanced Synthesis and Catalysis, 2018, 360, 406-410.	4.3	19
42	Bifunctional catalysis in the stereocontrolled synthesis of tetrahydro-1,2-oxazines. Organic and Biomolecular Chemistry, 2018, 16, 376-379.	2.8	9
43	Synthesis of γ,γâ€Disubstituted Butenolides through a Doubly Vinylogous Organocatalytic Cycloaddition. Chemistry - A European Journal, 2018, 24, 16543-16547.	3.3	12
44	Enantioselective organocatalytic approach to δ-lactones bearing a fused cyclohexanone scaffold. Tetrahedron Letters, 2018, 59, 2636-2639.	1.4	4
45	Front Cover: Taming of Thioketones: The First Asymmetric Thia-Diels-Alder Reaction with Thioketones as Heterodienophiles (Eur. J. Org. Chem. 5/2017). European Journal of Organic Chemistry, 2017, 2017, 939-939.	2.4	Ο
46	Studies on the Formation of Dienamine and Trienamine Intermediates by ¹ Hâ€NMR Spectroscopy. Asian Journal of Organic Chemistry, 2017, 6, 516-519.	2.7	5
47	d ⁰ a ³ Synthon Equivalents for the Stereocontrolled Synthesis of Functionalized 1,4-Amino Alcohol Precursors. Organic Letters, 2017, 19, 3143-3146.	4.6	7
48	BrÃ,nsted-base-catalyzed remote cascade reactivity of 2,4-dienones – asymmetric synthesis of tetrahydrothiophenes. Organic and Biomolecular Chemistry, 2017, 15, 9566-9569.	2.8	18
49	The first organocatalytic, ortho-regioselective inverse-electron-demand hetero-Diels–Alder reaction. Chemical Communications, 2017, 53, 11472-11475.	4.1	25
50	Organocatalytic Synthesis of cis-2,3-Aziridine Aldehydes by a Postreaction Isomerization. Organic Letters, 2017, 19, 5000-5003.	4.6	13
51	An organocatalytic cis-selective approach to bicyclic δ-lactones. Organic and Biomolecular Chemistry, 2017, 15, 7286-7289.	2.8	6
52	Aryl, hetaryl, and ferrocenyl thioketones as versatile building blocks for exploration in the organic chemistry of sulfur. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 204-211.	1.6	31
53	Taming of Thioketones: The First Asymmetric Thiaâ€Diels–Alder Reaction with Thioketones as Heterodienophiles. European Journal of Organic Chemistry, 2017, 2017, 950-954.	2.4	33
54	Asymmetric Organocatalysis in the Synthesis of Pyrrolidine DerivativesÂ-Bearing a Benzofuran-3(2H)-one Scaffold. Synthesis, 2017, 49, 880-890.	2.3	23

#	Article	IF	CITATIONS
55	Organocatalytic asymmetric approach to spirocyclic tetrahydrothiophenes containing either a butenolide or an azlactone structural motif. Arkivoc, 2017, 2016, 225-241.	0.5	4
56	Enantioselective synthesis of spirocyclic tetrahydrothiophene derivatives bearing a benzofuran-3(2H)-one scaffold. Unusual supramolecular crystal structure with high Z′. Tetrahedron Letters, 2016, 57, 2533-2538.	1.4	22
57	Aminocatalytic Strategy for the Synthesis of Optically Active Benzothiophene Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 2838-2844.	4.3	39
58	Asymmetric Synthesis of βâ€Aminoâ€Î±â€hydroxy Aldehyde Derivatives Bearing a Quaternary Stereogenic Center European Journal of Organic Chemistry, 2016, 2016, 4302-4306.	. 2.4	3
59	Asymmetric Aminocatalysis in the Synthesis of Î′‣actone Derivatives. Asian Journal of Organic Chemistry, 2016, 5, 1115-1119.	2.7	13
60	Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. Journal of Organic Chemistry, 2016, 81, 6800-6807.	3.2	22
61	Assessing the correlation between the degree of disc degeneration on the Pfirrmann scale and the metabolites identified in HR-MAS NMR spectroscopy. Magnetic Resonance Imaging, 2016, 34, 376-380.	1.8	20
62	Asymmetric Synthesis of 3,4â€Dihydrocoumarins Bearing an α,αâ€Disubstituted Amino Acid Moiety. Advanced Synthesis and Catalysis, 2015, 357, 3843-3848.	4.3	28
63	Organocatalytic Nonclassical Trienamine Activation in the Remote Alkylation of Furan Derivatives. Organic Letters, 2015, 17, 5682-5685.	4.6	38
64	Nucleophilic Catalysis in the Enantioselective Synthesis of α-Methylidene-δ-lactones. Synlett, 2015, 26, 2679-2684.	1.8	17
65	An organocatalytic biomimetic approach to α-aminophosphonates. Chemical Communications, 2015, 51, 3981-3984.	4.1	23
66	Chiral Iminophosphoranes—An Emerging Class of Superbase Organocatalysts. Chemistry - A European Journal, 2015, 21, 10268-10277.	3.3	109
67	Organocatalytic Synthesis of Optically Active Organophosphorus Compounds. European Journal of Organic Chemistry, 2015, 2015, 677-702.	2.4	40
68	Hydrogen-Bonding in Aminocatalysis: From Proline and Beyond. Chemistry - A European Journal, 2014, 20, 340-340.	3.3	0
69	Organocatalytic Enantioselective Approach to Spirocyclic Δβ,γ-Butenolides. Synlett, 2014, 25, 2957-2961.	1.8	11
70	A Convenient Approach to a Novel Group of Quaternary Amino Acids ContainingÂ-a Geminal Bisphosphonate Moiety. Synthesis, 2014, 46, 3233-3238.	2.3	10
71	Hydrogenâ€Bonding in Aminocatalysis: From Proline and Beyond. Chemistry - A European Journal, 2014, 20, 358-368.	3.3	113
72	Novel Organocatalytic Activation of Unmodified Morita–Baylis–Hillman Alcohols for the Synthesis of Bicyclic αâ€Alkylideneâ€Ketones. Chemistry - A European Journal, 2014, 20, 13108-13112.	3.3	29

#	Article	IF	CITATIONS
73	Asymmetric Formation of Bridged Benzoxazocines through an Organocatalytic Multicomponent Dienamine-Mediated One-Pot Cascade. Organic Letters, 2014, 16, 4182-4185.	4.6	27
74	Aminocatalytic remote functionalization strategies. Chemical Science, 2013, 4, 2287.	7.4	236
75	An efficient synthesis of l²,l³,l³-trisubstituted-l±-diethoxyphosphoryl-l³-lactams: a convenient approach to l±-methylene-l³-lactams. Tetrahedron Letters, 2013, 54, 3088-3090.	1.4	10
76	1,4-Naphthoquinones in H-Bond-Directed Trienamine-Mediated Strategies. Organic Letters, 2013, 15, 3010-3013.	4.6	45
77	Three-component reaction of 3-(diethoxyphosphoryl)coumarin, enolizable ketones and primary amines: Simple, stereoselective synthesis of benzo[1,3]oxazocine skeletons. RSC Advances, 2013, 3, 6821.	3.6	10
78	Beyond Classical Reactivity Patterns: Shifting from 1,4- to 1,6-Additions in Regio- and Enantioselective Organocatalyzed Vinylogous Reactions of Olefinic Lactones with Enals and 2,4-Dienals. Journal of the American Chemical Society, 2013, 135, 8063-8070.	13.7	147
79	Stereocontrolled Organocatalytic Strategy for the Synthesis of Optically Active 2,3â€Disubstituted <i>cis</i> â€2,3â€Dihydrobenzofurans. Chemistry - an Asian Journal, 2013, 8, 648-652.	3.3	19
80	Enantio- and Diastereoselective Synthesis of β,γ,δ.Tetrasubstituted α-Methylene-δ-lactones. Synthesis, 2012, 2012, 247-252.	2.3	1
81	Dienamineâ€Mediated Inverseâ€Electronâ€Demand Heteroâ€Diels–Alder Reaction by Using an Enantioselective Hâ€Bondâ€Directing Strategy. Angewandte Chemie - International Edition, 2012, 51, 13109-13113.	13.8	119
82	Enantioselective Hâ€Bondâ€Directing Approach for Trienamineâ€mediated Reactions in Asymmetric Synthesis. Angewandte Chemie - International Edition, 2012, 51, 9088-9092.	13.8	90
83	Enantioselective Formation of Substituted 3,4-Dihydrocoumarins by a Multicatalytic One-Pot Process. Organic Letters, 2012, 14, 5526-5529.	4.6	48
84	Organocatalytic synthesis of optically active heteroaromatic compounds. Catalysis Science and Technology, 2012, 2, 1089.	4.1	24
85	Optically Active Thiophenes via an Organocatalytic One-Pot Methodology. Organic Letters, 2012, 14, 724-727.	4.6	63
86	The Diarylprolinol Silyl Ether System: A General Organocatalyst. Accounts of Chemical Research, 2012, 45, 248-264.	15.6	667
87	Asymmetric Organocatalytic Formal [2 + 2]-Cycloadditions via Bifunctional H-Bond Directing Dienamine Catalysis. Journal of the American Chemical Society, 2012, 134, 2543-2546.	13.7	262
88	Asymmetric organocatalytic [3 + 2]-annulation strategy for the synthesis of N-fused heteroaromatic compounds. Chemical Science, 2011, 2, 1273.	7.4	56
89	Recent Advances in the Synthesis of αâ€Alkylideneâ€Substituted δâ€Lactones, γâ€Lactams and δâ€Lactams. Eur Journal of Organic Chemistry, 2011, 2011, 2747-2766.	opean 2.4	105
90	A Simple Recipe for Sophisticated Cocktails: Organocatalytic Oneâ€Pot Reactions—Concept, Nomenclature, and Future Perspectives. Angewandte Chemie - International Edition, 2011, 50, 8492-8509.	13.8	437

#	Article	IF	CITATIONS
91	Taming the Friedel–Crafts Reaction: Organocatalytic Approach to Optically Active 2,3â€Dihydrobenzofurans. Angewandte Chemie - International Edition, 2011, 50, 12496-12500.	13.8	72
92	Asymmetric Trienamine Catalysis for the Construction of Structurally Rigid Cyclic α,αâ€Đisubstituted Amino Acid Derivatives. Chemistry - A European Journal, 2011, 17, 9032-9036.	3.3	82
93	Organocatalytic Strategies for the Construction of Optically Active Imidazoles, Oxazoles, and Thiazoles. Chemistry - A European Journal, 2011, 17, 13240-13246.	3.3	23
94	Organocatalytic Preparation of Simple β-Hydroxy and β-Amino Esters: Low Catalyst Loadings and Gram-Scale Synthesis. Organic Letters, 2010, 12, 5052-5055.	4.6	79
95	Synthesis and cytotoxic evaluation of β-alkyl or β-aryl-δ-methyl-α-methylene-δ-lactones. Comparison with the corresponding γ-lactones. European Journal of Medicinal Chemistry, 2010, 45, 710-718.	5.5	27
96	Organocatalytic Asymmetric Synthesis of Organophosphorus Compounds. Chemistry - A European Journal, 2010, 16, 28-48.	3.3	160
97	An Organocatalytic Approach to 2-Hydroxyalkyl- and 2-Aminoalkyl Furanes. Journal of the American Chemical Society, 2010, 132, 17886-17893.	13.7	87
98	Asymmetric Formal trans-Dihydroxylation and trans-Aminohydroxylation of α,β-Unsaturated Aldehydes via an Organocatalytic Reaction Cascade. Journal of the American Chemical Society, 2010, 132, 9188-9196.	13.7	104
99	A convenient synthesis and cytotoxic evaluation of β-aryl-α-methylidene-γ-lactones and β-aryl-α-methylidene-γ-lactams. New Journal of Chemistry, 2010, 34, 750.	2.8	24
100	Organocatalytic Domino Michael–Knoevenagel Condensation Reaction for the Synthesis of Optically Active 3â€Diethoxyphosphorylâ€2â€oxocyclohexâ€3â€enecarboxylates. Chemistry - A European Journal, 2009, 1 3093-3102.	5,3.3	74
101	An Efficient Synthesis of β,γ -Disubstituted α -Diethoxyphosphoryl-γ -lactones: A Convenient Approach to α -Methylene-γ -lactones. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 963-978.	1.6	14
102	Synthesis and crystal structure of 1-(aminomethyl)vinylphosphonic acid. Tetrahedron, 2008, 64, 5051-5054.	1.9	8
103	A convenient synthesis and cytotoxic evaluation of N-unsubstituted α-methylene-γ-lactams. Tetrahedron, 2008, 64, 6307-6314.	1.9	47
104	Enantioselective Organocatalytic Approach to α-Methylene-δ-lactones and δ-Lactams. Journal of Organic Chemistry, 2008, 73, 8337-8343.	3.2	46
105	A Novel and Convenient Synthesis of Cyclopent-1-enecarboxylates by an Âŀntramolecular Horner-Wadsworth-Emmons Reaction. Synthesis, 2008, 2008, 3951-3956.	2.3	9
106	rac-(1S,2R)-Diethyl 6-hydroxy-1-(4-methoxyphenyl)-3-oxo-2,3-dihydro-1H-benzo[f]chromen-2-yl]phosphonate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1240-o1241.	0.2	0
107	Bromodecarboxylation of (E)-3-Aryl-2-(diethoxyphosphoryl)acrylic Acids: A Facile Route to Diethyl Arylethynylphosphonates. Synthesis, 2007, 2007, 1877-1881.	2.3	4
108	Trifluoromethanesulfonic acid mediated Friedel–Crafts reaction of (E)-3-aryl-2-(diethoxyphosphoryl)acrylic acids with electron-rich hydroxyarenes. A convenient approach to α-methylene-δ-valerolactones. Tetrahedron, 2007, 63, 12583-12594.	1.9	25

#	Article	IF	CITATIONS
109	rac-Diethyl [(1S,2R)-1-(4-bromophenyl)-6-hydroxy-3-oxo-2,3-dihydro-1H-benzo[f]chromen-2-yl]phosphonate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4148-o4148.	0.2	2
110	(2R*,3R*,4R*)-tert-Butyl 2-(diethoxyphosphoryl)-4-nitro-3-(4-nitrophenyl)pentanoate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o2743-o2745.	0.2	1
111	Spontaneous Nef reaction of 3-aryl-2-(diethoxyphosphoryl)-4-nitroalkanoic acids. Tetrahedron, 2006, 62, 9135-9145.	1.9	18
112	Aminocatalytic Alkylation of Indeneâ€⊋â€Carbaldehydes via Pentaenamine Activation. Advanced Synthesis and Catalysis, 0, , .	4.3	6