Åukasz Albrecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4631133/publications.pdf

Version: 2024-02-01

112 papers 4,751 citations

147801 31 h-index 102487 66 g-index

127 all docs

127 docs citations

127 times ranked 3389 citing authors

#	Article	IF	CITATIONS
1	The Diarylprolinol Silyl Ether System: A General Organocatalyst. Accounts of Chemical Research, 2012, 45, 248-264.	15.6	667
2	A Simple Recipe for Sophisticated Cocktails: Organocatalytic Oneâ€Pot Reactions—Concept, Nomenclature, and Future Perspectives. Angewandte Chemie - International Edition, 2011, 50, 8492-8509.	13.8	437
3	Asymmetric Organocatalytic Formal [2 + 2]-Cycloadditions via Bifunctional H-Bond Directing Dienamine Catalysis. Journal of the American Chemical Society, 2012, 134, 2543-2546.	13.7	262
4	Aminocatalytic remote functionalization strategies. Chemical Science, 2013, 4, 2287.	7.4	236
5	Organocatalytic Asymmetric Synthesis of Organophosphorus Compounds. Chemistry - A European Journal, 2010, 16, 28-48.	3.3	160
6	Beyond Classical Reactivity Patterns: Shifting from 1,4- to 1,6-Additions in Regio- and Enantioselective Organocatalyzed Vinylogous Reactions of Olefinic Lactones with Enals and 2,4-Dienals. Journal of the American Chemical Society, 2013, 135, 8063-8070.	13.7	147
7	Dienamineâ€Mediated Inverseâ€Electronâ€Demand Heteroâ€Diels–Alder Reaction by Using an Enantioselective Hâ€Bondâ€Directing Strategy. Angewandte Chemie - International Edition, 2012, 51, 13109-13113.	13.8	119
8	Hydrogenâ€Bonding in Aminocatalysis: From Proline and Beyond. Chemistry - A European Journal, 2014, 20, 358-368.	3.3	113
9	Chiral Iminophosphoranes—An Emerging Class of Superbase Organocatalysts. Chemistry - A European Journal, 2015, 21, 10268-10277.	3.3	109
10	Recent Advances in the Synthesis of αâ€Alkylideneâ€Substituted δâ€Lactones, γâ€Lactams and δâ€Lactams. Euro Journal of Organic Chemistry, 2011, 2011, 2747-2766.	opean 2.4	105
11	Asymmetric Formal trans-Dihydroxylation and trans-Aminohydroxylation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes via an Organocatalytic Reaction Cascade. Journal of the American Chemical Society, 2010, 132, 9188-9196.	13.7	104
12	Enantioselective Hâ€Bondâ€Directing Approach for Trienamineâ€mediated Reactions in Asymmetric Synthesis. Angewandte Chemie - International Edition, 2012, 51, 9088-9092.	13.8	90
13	An Organocatalytic Approach to 2-Hydroxyalkyl- and 2-Aminoalkyl Furanes. Journal of the American Chemical Society, 2010, 132, 17886-17893.	13.7	87
14	Asymmetric Trienamine Catalysis for the Construction of Structurally Rigid Cyclic α,αâ€Disubstituted Amino Acid Derivatives. Chemistry - A European Journal, 2011, 17, 9032-9036.	3.3	82
15	Organocatalytic Preparation of Simple \hat{l}^2 -Hydroxy and \hat{l}^2 -Amino Esters: Low Catalyst Loadings and Gram-Scale Synthesis. Organic Letters, 2010, 12, 5052-5055.	4.6	79
16	Organocatalytic Domino Michael–Knoevenagel Condensation Reaction for the Synthesis of Optically Active 3â€Diethoxyphosphorylâ€2â€oxocyclohexâ€3â€enecarboxylates. Chemistry - A European Journal, 2009, 15 3093-3102.	,3.3	74
17	Taming the Friedel–Crafts Reaction: Organocatalytic Approach to Optically Active 2,3â€Dihydrobenzofurans. Angewandte Chemie - International Edition, 2011, 50, 12496-12500.	13.8	72
18	Optically Active Thiophenes via an Organocatalytic One-Pot Methodology. Organic Letters, 2012, 14, 724-727.	4.6	63

#	Article	IF	CITATIONS
19	Asymmetric organocatalytic [3 + 2]-annulation strategy for the synthesis of N-fused heteroaromatic compounds. Chemical Science, 2011, 2, 1273.	7.4	56
20	Breaking Aromaticity with Aminocatalysis: A Convenient Strategy for Asymmetric Synthesis. Angewandte Chemie - International Edition, 2019, 58, 63-73.	13.8	56
21	Enantioselective Formation of Substituted 3,4-Dihydrocoumarins by a Multicatalytic One-Pot Process. Organic Letters, 2012, 14, 5526-5529.	4.6	48
22	A convenient synthesis and cytotoxic evaluation of N-unsubstituted \hat{l}_{\pm} -methylene- \hat{l}^{3} -lactams. Tetrahedron, 2008, 64, 6307-6314.	1.9	47
23	Enantioselective Organocatalytic Approach to α-Methylene-δ-lactones and δ-Lactams. Journal of Organic Chemistry, 2008, 73, 8337-8343.	3.2	46
24	1,4-Naphthoquinones in H-Bond-Directed Trienamine-Mediated Strategies. Organic Letters, 2013, 15, 3010-3013.	4.6	45
25	Organocatalytic Synthesis of Optically Active Organophosphorus Compounds. European Journal of Organic Chemistry, 2015, 2015, 677-702.	2.4	40
26	Aminocatalytic Strategy for the Synthesis of Optically Active Benzothiophene Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 2838-2844.	4.3	39
27	Organocatalytic Nonclassical Trienamine Activation in the Remote Alkylation of Furan Derivatives. Organic Letters, 2015, 17, 5682-5685.	4.6	38
28	The Game of Electrons: Organocatalytic Higherâ€Order Cycloadditions Involving Fulvene―and Troponeâ€Derived Systems. Chemistry - A European Journal, 2020, 26, 2120-2132.	3.3	35
29	Taming of Thioketones: The First Asymmetric Thiaâ€Diels–Alder Reaction with Thioketones as Heterodienophiles. European Journal of Organic Chemistry, 2017, 2017, 950-954.	2.4	33
30	Aryl, hetaryl, and ferrocenyl thioketones as versatile building blocks for exploration in the organic chemistry of sulfur. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 204-211.	1.6	31
31	Novel Organocatalytic Activation of Unmodified Morita–Baylis–Hillman Alcohols for the Synthesis of Bicyclic αâ€Alkylideneâ€Ketones. Chemistry - A European Journal, 2014, 20, 13108-13112.	3.3	29
32	Asymmetric Synthesis of 3,4â€Dihydrocoumarins Bearing an α,αâ€Disubstituted Amino Acid Moiety. Advanced Synthesis and Catalysis, 2015, 357, 3843-3848.	4.3	28
33	Synthesis and cytotoxic evaluation of \hat{l}^2 -alkyl or \hat{l}^2 -aryl- \hat{l} -methyl- \hat{l} -methylene- \hat{l} -lactones. Comparison with the corresponding \hat{l}^3 -lactones. European Journal of Medicinal Chemistry, 2010, 45, 710-718.	5. 5	27
34	Asymmetric Formation of Bridged Benzoxazocines through an Organocatalytic Multicomponent Dienamine-Mediated One-Pot Cascade. Organic Letters, 2014, 16, 4182-4185.	4.6	27
35	Inverting the reactivity of troponoid systems in enantioselective higher-order cycloaddition. Chemical Communications, 2019, 55, 11675-11678.	4.1	27
36	Asymmetric Formal Vinylogous Iminium Ion Activation for Vinyl-Substituted Heteroaryl and Aryl Aldehydes. Organic Letters, 2019, 21, 9628-9632.	4.6	27

#	Article	IF	CITATIONS
37	Trifluoromethanesulfonic acid mediated Friedel–Crafts reaction of (E)-3-aryl-2-(diethoxyphosphoryl)acrylic acids with electron-rich hydroxyarenes. A convenient approach to α-methylene-δ-valerolactones. Tetrahedron, 2007, 63, 12583-12594.	1.9	25
38	The first organocatalytic, ortho-regioselective inverse-electron-demand hetero-Diels–Alder reaction. Chemical Communications, 2017, 53, 11472-11475.	4.1	25
39	A convenient synthesis and cytotoxic evaluation of \hat{l}^2 -aryl- \hat{l}^2 -methylidene- \hat{l}^3 -lactones and \hat{l}^2 -aryl- \hat{l}^2 -methylidene- \hat{l}^3 -lactams. New Journal of Chemistry, 2010, 34, 750.	2.8	24
40	Organocatalytic synthesis of optically active heteroaromatic compounds. Catalysis Science and Technology, 2012, 2, 1089.	4.1	24
41	Organocatalytic Strategies for the Construction of Optically Active Imidazoles, Oxazoles, and Thiazoles. Chemistry - A European Journal, 2011, 17, 13240-13246.	3.3	23
42	An organocatalytic biomimetic approach to \hat{l}_{\pm} -aminophosphonates. Chemical Communications, 2015, 51, 3981-3984.	4.1	23
43	Asymmetric Organocatalysis in the Synthesis of Pyrrolidine DerivativesÂ-Bearing a Benzofuran-3(2H)-one Scaffold. Synthesis, 2017, 49, 880-890.	2.3	23
44	Enantioselective synthesis of spirocyclic tetrahydrothiophene derivatives bearing a benzofuran-3(2H)-one scaffold. Unusual supramolecular crystal structure with high Z′. Tetrahedron Letters, 2016, 57, 2533-2538.	1.4	22
45	Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. Journal of Organic Chemistry, 2016, 81, 6800-6807.	3.2	22
46	Assessing the correlation between the degree of disc degeneration on the Pfirrmann scale and the metabolites identified in HR-MAS NMR spectroscopy. Magnetic Resonance Imaging, 2016, 34, 376-380.	1.8	20
47	Cyclic 1â€Azadienes in the Organocatalytic Inverseâ€Electronâ€Demand Azaâ€Dielsâ€Alder Cycloadditions. Asian Journal of Organic Chemistry, 2020, 9, 1688-1700.	2.7	20
48	Deconjugatedâ€Ketoneâ€Derived Dienolates in Remote, Stereocontrolled, Aromative <i>aza</i> å€Dielsâ€Alder Cycloaddition. Advanced Synthesis and Catalysis, 2020, 362, 2658-2665.	4.3	20
49	Stereocontrolled Organocatalytic Strategy for the Synthesis of Optically Active 2,3â€Disubstituted <i>cis</i> â€2,3â€Dihydrobenzofurans. Chemistry - an Asian Journal, 2013, 8, 648-652.	3.3	19
50	Vinylogous Nucleophiles Bearing the Endocyclic Double Bond in the Allylic Alkylation with Moritaâ∈Baylisâ∈Hillman Carbonates. Advanced Synthesis and Catalysis, 2018, 360, 406-410.	4.3	19
51	Spontaneous Nef reaction of 3-aryl-2-(diethoxyphosphoryl)-4-nitroalkanoic acids. Tetrahedron, 2006, 62, 9135-9145.	1.9	18
52	Brønsted-base-catalyzed remote cascade reactivity of 2,4-dienones – asymmetric synthesis of tetrahydrothiophenes. Organic and Biomolecular Chemistry, 2017, 15, 9566-9569.	2.8	18
53	Nucleophilic Catalysis in the Enantioselective Synthesis of \hat{l}_{\pm} -Methylidene- \hat{l}' -lactones. Synlett, 2015, 26, 2679-2684.	1.8	17
54	Hydroxyl-group-activated azomethine ylides in organocatalytic H-bond-assisted 1,3-dipolar cycloadditions and beyond. Organic and Biomolecular Chemistry, 2021, 19, 3075-3086.	2.8	17

#	Article	IF	CITATIONS
55	Aromatizative Inverseâ€Electronâ€Demand Heteroâ€Dielsâ€Alder Reaction in the Synthesis of Benzothiophene Derivatives. European Journal of Organic Chemistry, 2019, 2019, 6592-6596.	2.4	16
56	Unterbrechung der Aromatizit $\tilde{A}^{\mathbf{g}}$ mittels Aminokatalyse: Eine einfache Strategie f $\tilde{A}^{1}\!\!/\!\!4$ r die asymmetrische Synthese. Angewandte Chemie, 2019, 131, 64-75.	2.0	15
57	2-Substituted 1,4-Naphthoquinones in [6 + 4]-Cycloaddition with 8,8-Dicyanoheptafulvene. Journal of Organic Chemistry, 2019, 84, 9929-9936.	3.2	15
58	\hat{l}_{\pm},\hat{l}^2 -Unsaturated butenolides in an organocatalytic doubly annulative cascade for the preparation of 3,4-dihydrocoumarins. Organic and Biomolecular Chemistry, 2019, 17, 2624-2628.	2.8	15
59	Asymmetric Synthesis of [2.2.2]-Bicyclic Lactones via All-Carbon Inverse-Electron-Demand Diels–Alder Reaction. Organic Letters, 2020, 22, 1813-1817.	4.6	15
60	An Efficient Synthesis of \hat{l}^2 , \hat{l}^3 -Disubstituted \hat{l}_\pm -Diethoxyphosphoryl- \hat{l}^3 -lactones: A Convenient Approach to \hat{l}_\pm -Methylene- \hat{l}^3 -lactones. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 963-978.	1.6	14
61	Comparison of quantitative NMR and IRMS for the authentication of â€ [*] Polish Vodkaâ€ [™] . Journal of the Science of Food and Agriculture, 2019, 99, 263-268.	3.5	14
62	The Application of NMR Spectroscopy and Chemometrics in Authentication of Spices. Molecules, 2021, 26, 382.	3.8	14
63	Asymmetric Aminocatalysis in the Synthesis of δâ€Lactone Derivatives. Asian Journal of Organic Chemistry, 2016, 5, 1115-1119.	2.7	13
64	Organocatalytic Synthesis of cis-2,3-Aziridine Aldehydes by a Postreaction Isomerization. Organic Letters, 2017, 19, 5000-5003.	4.6	13
65	The Application of 2-Benzyl-1,4-naphthoquinones as Pronucleophiles in Aminocatalytic Synthesis of Tricyclic Derivatives. Journal of Organic Chemistry, 2018, 83, 5019-5026.	3.2	13
66	Enantioselective H-bond-directed vinylogous iminium ion strategy for the functionalization of vinyl-substituted heteroaryl aldehydes. Chemical Communications, 2021, 57, 1667-1670.	4.1	13
67	Synthesis of γ,γâ€Disubstituted Butenolides through a Doubly Vinylogous Organocatalytic Cycloaddition. Chemistry - A European Journal, 2018, 24, 16543-16547.	3.3	12
68	Organocatalytic Enantioselective Approach to Spirocyclic Î"Î2,Î3-Butenolides. Synlett, 2014, 25, 2957-2961.	1.8	11
69	Isothiocyanate Strategy for the Synthesis of Quaternary αâ€Amino Acids Bearing a Spirocyclic Ring System. Advanced Synthesis and Catalysis, 2018, 360, 1822-1832.	4.3	11
70	Doubly vinylogous and doubly rearomative functionalization of 2-alkyl-3-furfurals. Organic and Biomolecular Chemistry, 2020, 18, 5816-5821.	2.8	11
71	An efficient synthesis of $\hat{l}^2, \hat{l}^3, \hat{l}^3$ -trisubstituted- \hat{l} +-diethoxyphosphoryl- \hat{l}^3 -lactams: a convenient approach to \hat{l} +-methylene- \hat{l}^3 -lactams. Tetrahedron Letters, 2013, 54, 3088-3090.	1.4	10
72	Three-component reaction of 3-(diethoxyphosphoryl)coumarin, enolizable ketones and primary amines: Simple, stereoselective synthesis of benzo[1,3]oxazocine skeletons. RSC Advances, 2013, 3, 6821.	3.6	10

#	Article	IF	CITATIONS
73	A Convenient Approach to a Novel Group of Quaternary Amino Acids ContainingÂ-a Geminal Bisphosphonate Moiety. Synthesis, 2014, 46, 3233-3238.	2.3	10
74	The Role of Saccharomyces cerevisiae Yeast and Lactic Acid Bacteria in the Formation of 2-Propanol from Acetone during Fermentation of Rye Mashes Obtained Using Thermal-Pressure Method of Starch Liberation. Molecules, 2019, 24, 610.	3.8	10
75	Lewis Basic Amine Catalyzed Aza-Michael Reaction of Indole- and Pyrrole-3-carbaldehydes. Synthesis, 2020, 52, 2650-2661.	2.3	10
76	Allylic–Allylic Alkylation with 3,5-Dimethyl-4-nitroisoxazole: A Route to Dicarboxylic Acid Derivatives. Journal of Organic Chemistry, 2020, 85, 2938-2944.	3.2	10
77	A Novel and Convenient Synthesis of Cyclopent-1-enecarboxylates by an Âlntramolecular Horner-Wadsworth-Emmons Reaction. Synthesis, 2008, 2008, 3951-3956.	2.3	9
78	Bifunctional catalysis in the stereocontrolled synthesis of tetrahydro-1,2-oxazines. Organic and Biomolecular Chemistry, 2018, 16, 376-379.	2.8	9
79	Visible-light synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones <i>via</i> doubly decarboxylative Giese reaction. RSC Advances, 2021, 11, 27782-27786.	3.6	9
80	Synthesis and crystal structure of 1-(aminomethyl)vinylphosphonic acid. Tetrahedron, 2008, 64, 5051-5054.	1.9	8
81	On the origins of stereoselectivity in the aminocatalytic remote alkylation of 5-alkylfurfurals. Organic and Biomolecular Chemistry, 2019, 17, 6025-6031.	2.8	8
82	Aminocatalytic Synthesis of Uracil Derivatives Bearing a Bicyclo[2.2.2]octane Scaffold via a Doubly Cycloadditive Reaction Cascade. Synthesis, 2021, 53, 309-317.	2.3	8
83	d ⁰ a ³ Synthon Equivalents for the Stereocontrolled Synthesis of Functionalized 1,4-Amino Alcohol Precursors. Organic Letters, 2017, 19, 3143-3146.	4.6	7
84	Asymmetric Dearomative (3+2)-Cycloaddition Involving Nitro-Substituted Benzoheteroarenes under H-Bonding Catalysis. Molecules, 2021, 26, 4992.	3.8	7
85	Differentiating Catalysis in the Dearomative [4 + 2]-Cycloaddition Involving Enals and Heteroaromatic Aldehydes. Organic Letters, 2022, 24, 955-959.	4.6	7
86	Dearomative Michael addition involving enals and 2-nitrobenzofurans realized under NHC-catalysis. Chemical Communications, 2022, 58, 5367-5370.	4.1	7
87	5-Substituted-furan-2(3 <i>H</i>)-ones in [8 + 2]-Cycloaddition with 8,8-Dicyanoheptafulvene. Journal of Organic Chemistry, 2022, 87, 5296-5302.	3.2	7
88	An organocatalytic cis-selective approach to bicyclic δ-lactones. Organic and Biomolecular Chemistry, 2017, 15, 7286-7289.	2.8	6
89	Site-Selective and Enantioselective $\hat{l}\pm,\hat{l}^2,\hat{l}^3$ -Functionalization of 5-Alkylidenefuran-2(5 <i>H</i>)-ones: A Route to Polycyclic \hat{l}^3 -Lactones. Organic Letters, 2019, 21, 1248-1252.	4.6	6
90	1,3,4-Thiadiazoles Effectively Inhibit Proliferation of Toxoplasma gondii. Cells, 2021, 10, 1053.	4.1	6

#	Article	IF	Citations
91	Aminocatalytic Alkylation of Indeneâ€2â€Carbaldehydes via Pentaenamine Activation. Advanced Synthesis and Catalysis, 0, , .	4.3	6
92	NHCâ€Catalyzed 1,4â€Elimination in the Dearomative Activation of 3â€Furaldehydes towards (4+2)â€Cycloadditions. Advanced Synthesis and Catalysis, 2022, 364, 1434-1439.	4.3	6
93	Studies on the Formation of Dienamine and Trienamine Intermediates by ¹ Hâ€NMR Spectroscopy. Asian Journal of Organic Chemistry, 2017, 6, 516-519.	2.7	5
94	Bromodecarboxylation of (E)-3-Aryl-2-(diethoxyphosphoryl)acrylic Acids: A Facile Route to Diethyl Arylethynylphosphonates. Synthesis, 2007, 2007, 1877-1881.	2.3	4
95	Enantioselective organocatalytic approach to \hat{l} -lactones bearing a fused cyclohexanone scaffold. Tetrahedron Letters, 2018, 59, 2636-2639.	1.4	4
96	Effect of Co-Inoculation with Saccharomyces cerevisiae and Lactic Acid Bacteria on the Content of Propan-2-ol, Acetaldehyde and Weak Acids in Fermented Distillery Mashes. International Journal of Molecular Sciences, 2019, 20, 1659.	4.1	4
97	Solid-Phase Synthesis of an Insect Pyrokinin Analog Incorporating an Imidazoline Ring as Isosteric Replacement of a trans Peptide Bond. Molecules, 2021, 26, 3271.	3.8	4
98	Organocatalytic asymmetric approach to spirocyclic tetrahydrothiophenes containing either a butenolide or an azlactone structural motif. Arkivoc, 2017, 2016, 225-241.	0.5	4
99	Asymmetric Synthesis of βâ€Aminoâ€Î±â€hydroxy Aldehyde Derivatives Bearing a Quaternary Stereogenic Center European Journal of Organic Chemistry, 2016, 2016, 4302-4306.	2.4	3
100	Intramolecular [2+2]â€Cycloaddition in the Synthesis of Polycyclic Tetrahydrothiopyran Derivatives Bearing a Cyclobutane Scaffold. Advanced Synthesis and Catalysis, 2019, 361, 2274-2279.	4.3	3
101	Asymmetric vinylogous Michael addition of 5-substituted-furan-2(3 <i>H</i>)-ones to an \hat{l}_{\pm},\hat{l}^2 -unsaturated- \hat{l}^3 -lactam. Organic and Biomolecular Chemistry, 2020, 18, 8633-8637.	2.8	3
102	The First Application of 1H NMR Spectroscopy for the Assessment of the Authenticity of Perfumes. Molecules, 2021, 26, 3098.	3.8	3
103	Vinylogous hydrazone strategy for the organocatalytic alkylation of heteroaromatic derivatives. Chemical Communications, 2021, 57, 6312-6315.	4.1	3
104	rac-Diethyl [(15,2R)-1-(4-bromophenyl)-6-hydroxy-3-oxo-2,3-dihydro-1H-benzo[f]chromen-2-yl]phosphonate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4148-o4148.	0.2	2
105	Remote Functionalization of 4â€(Alkâ€1â€enâ€1â€yl)â€3â€Cyanocoumarins via the Asymmetric Organocatalytic 1,6â€Addition. Advanced Synthesis and Catalysis, 2021, 363, 5116.	4.3	2
106	(2R*,3R*,4R*)-tert-Butyl 2-(diethoxyphosphoryl)-4-nitro-3-(4-nitrophenyl)pentanoate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o2743-o2745.	0.2	1
107	Enantio- and Diastereoselective Synthesis of \hat{l}^2 , \hat{l}^3 , \hat{l}^4 -Tetrasubstituted \hat{l}^4 -Methylene- \hat{l}^4 -lactones. Synthesis, 2012, 2012, 247-252.	2.3	1
108	Hydrogen-Bonding in Aminocatalysis: From Proline and Beyond. Chemistry - A European Journal, 2014, 20, 340-340.	3.3	0

#	Article	IF	CITATIONS
109	Front Cover: Taming of Thioketones: The First Asymmetric Thia-Diels-Alder Reaction with Thioketones as Heterodienophiles (Eur. J. Org. Chem. 5/2017). European Journal of Organic Chemistry, 2017, 2017, 939-939.	2.4	0
110	Frontispiece: The Game of Electrons: Organocatalytic Higherâ€Order Cycloadditions Involving Fulvene― and Troponeâ€Đerived Systems. Chemistry - A European Journal, 2020, 26, .	3.3	0
111	The influence of experimental parameters on quantitative deuterium measurements for ethyl alcohols of different origin. Journal of the Science of Food and Agriculture, 2020, 100, 1812-1815.	3.5	O
112	rac-(1S,2R)-Diethyl 6-hydroxy-1-(4-methoxyphenyl)-3-oxo-2,3-dihydro-1H-benzo[f]chromen-2-yl]phosphonate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1240-o1241.	0.2	0