
Michael S Behnke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4630694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Secreted Serine-Threonine Kinase Determines Virulence in the Eukaryotic Pathogen Toxoplasma gondii. Science, 2006, 314, 1776-1780.	6.0	520
2	Compensatory dendritic cell development mediated by BATF–IRF interactions. Nature, 2012, 490, 502-507.	13.7	367
3	Phosphorylation of Immunity-Related GTPases by a Toxoplasma gondii-Secreted Kinase Promotes Macrophage Survival and Virulence. Cell Host and Microbe, 2010, 8, 484-495.	5.1	286
4	Coordinated Progression through Two Subtranscriptomes Underlies the Tachyzoite Cycle of Toxoplasma gondii. PLoS ONE, 2010, 5, e12354.	1.1	248
5	Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nature Communications, 2016, 7, 10147.	5.8	243
6	Virulence differences in <i>Toxoplasma</i> mediated by amplification of a family of polymorphic pseudokinases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9631-9636.	3.3	230
7	A Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved and Essential Protein Import Factor. PLoS Pathogens, 2011, 7, e1002392.	2.1	221
8	The transcriptome of Toxoplasma gondii. BMC Biology, 2005, 3, 26.	1.7	167
9	The Polymorphic Pseudokinase ROP5 Controls Virulence in Toxoplasma gondii by Regulating the Active Kinase ROP18. PLoS Pathogens, 2012, 8, e1002992.	2.1	153
10	Rhoptry Proteins ROP5 and ROP18 Are Major Murine Virulence Factors in Genetically Divergent South American Strains of Toxoplasma gondii. PLoS Genetics, 2015, 11, e1005434.	1.5	99
11	miR-146a and miR-155 Delineate a MicroRNA Fingerprint Associated with Toxoplasma Persistence in the Host Brain. Cell Reports, 2014, 6, 928-937.	2.9	96
12	The transcription of bradyzoite genes in <i>Toxoplasma gondii</i> is controlled by autonomous promoter elements. Molecular Microbiology, 2008, 68, 1502-1518.	1.2	91
13	WRN conditioned media is sufficient for <i>in vitro</i> propagation of intestinal organoids from large farm and small companion animals. Biology Open, 2017, 6, 698-705.	0.6	88
14	Changes in the Expression of Human Cell Division Autoantigen-1 Influence Toxoplasma gondii Growth and Development. PLoS Pathogens, 2006, 2, e105.	2.1	81
15	Toxoplasma gondii merozoite gene expression analysis with comparison to the life cycle discloses a unique expression state during enteric development. BMC Genomics, 2014, 15, 350.	1.2	80
16	Serial Analysis of Gene Expression in Circulating ^ĵ 3δT Cell Subsets Defines Distinct Immunoregulatory Phenotypes and Unexpected Gene Expression Profiles. Journal of Immunology, 2003, 170, 356-364.	0.4	78
17	Phenotypic and Gene Expression Changes among Clonal Type I Strains of <i>Toxoplasma gondii</i> . Eukaryotic Cell, 2009, 8, 1828-1836.	3.4	76
18	Genotyping Toxoplasma gondii from wildlife in Pennsylvania and identification of natural recombinants virulent to mice. Veterinary Parasitology, 2014, 200, 74-84.	0.7	58

MICHAEL S BEHNKE

#	Article	IF	CITATIONS
19	A novel multifunctional oligonucleotide microarray for Toxoplasma gondii. BMC Genomics, 2010, 11, 603.	1.2	57
20	Cell cycleâ€dependent, intercellular transmission of <i>Toxoplasma gondii</i> is accompanied by marked changes in parasite gene expression. Molecular Microbiology, 2011, 79, 192-204.	1.2	57
21	Genetic Mapping of Pathogenesis Determinants in <i>Toxoplasma gondii</i> . Annual Review of Microbiology, 2016, 70, 63-81.	2.9	49
22	The Past, Present, and Future of Genetic Manipulation in Toxoplasma gondii. Trends in Parasitology, 2016, 32, 542-553.	1.5	36
23	Evolution of resistance in vitro reveals mechanisms of artemisinin activity in <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26881-26891.	3.3	30
24	Genetic Mapping Reveals that Sinefungin Resistance in Toxoplasma gondii Is Controlled by a Putative Amino Acid Transporter Locus That Can Be Used as a Negative Selectable Marker. Eukaryotic Cell, 2015, 14, 140-148.	3.4	29
25	Genetic rescue of a Toxoplasma gondii conditional cell cycle mutant. Molecular Microbiology, 2004, 55, 1060-1071.	1.2	28
26	T. gondii RP Promoters & Knockdown Reveal Molecular Pathways Associated with Proliferation and Cell-Cycle Arrest. PLoS ONE, 2010, 5, e14057.	1.1	28
27	Biochemical and genetic analysis of the distinct proliferating cell nuclear antigens of Toxoplasma gondii. Molecular and Biochemical Parasitology, 2005, 142, 56-65.	0.5	22
28	NextGen sequencing reveals short double crossovers contribute disproportionately to genetic diversity in Toxoplasma gondii. BMC Genomics, 2014, 15, 1168.	1.2	17
29	A comprehensive SAGE database for the analysis of $\hat{I}^{3}\hat{I}$ T cells. International Immunology, 2006, 18, 613-626.	1.8	11
30	An Important Role for CD4 ⁺ T Cells in Adaptive Immunity to Toxoplasma gondii in Mice Lacking the Transcription Factor Batf3. MSphere, 2020, 5, .	1.3	8
31	Development and application of classical genetics in Toxoplasma gondii. , 2020, , 859-896.		2
32	QTL Mapping and CRISPR/Cas9 Editing to Identify a Drug Resistance Gene in Toxoplasma gondii . Journal of Visualized Experiments, 2017, , .	0.2	1