
Thomas Hickler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4630664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	4.2	2,002
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
3	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	4.2	1,031
4	Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9, 137-152.	1.1	966
5	Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences, 2014, 11, 2027-2054.	1.3	476
6	Structuring sustainability science. Sustainability Science, 2011, 6, 69-82.	2.5	421
7	Assessing the impacts of 1.5†°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 2017, 10, 4321-4345.	1.3	410
8	Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate <scp>F</scp> reeâ€ <scp>A</scp> ir <scp>CO</scp> ₂ <scp> E</scp> nrichment studies. New Phytologist, 2014, 202, 803-822.	3.5	378
9	Projecting the future distribution of European potential natural vegetation zones with a generalized, tree speciesâ€based dynamic vegetation model. Clobal Ecology and Biogeography, 2012, 21, 50-63.	2.7	372
10	Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 2012, 39, 2163-2178.	1.4	340
11	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	1.1	323
12	Forest water use and water use efficiency at elevated <scp><scp>CO₂</scp></scp> : a modelâ€data intercomparison at two contrasting temperate forest <scp>FACE</scp> sites. Global Change Biology, 2013, 19, 1759-1779.	4.2	314
13	Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 2007, 81, 123-143.	1.7	304
14	Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes. Current Biology, 2012, 22, 1925-1931.	1.8	290
15	Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 2019, 10, 3109.	5.8	285
16	Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO ₂ -isoprene interaction. Atmospheric Chemistry and Physics, 2007, 7, 31-53.	1.9	276
17	CO ₂ fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biology, 2008, 14, 1531-1542.	4.2	276
18	The status and challenge of global fire modelling. Biogeosciences, 2016, 13, 3359-3375.	1.3	274

#	Article	IF	CITATIONS
19	Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest freeâ€air CO ₂ enrichment sites. New Phytologist, 2014, 203, 883-899.	3.5	263
20	Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science, 2017, 355, .	6.0	260
21	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	4.7	259
22	Using ecosystem experiments to improve vegetation models. Nature Climate Change, 2015, 5, 528-534.	8.1	249
23	Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change. , 2007, , 175-192.		222
24	Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Climate of the Past, 2010, 6, 483-499.	1.3	214
25	Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. Forest Ecology and Management, 2010, 259, 2213-2222.	1.4	206
26	The influence of interspecific interactions on species range expansion rates. Ecography, 2014, 37, 1198-1209.	2.1	196
27	Climatic Risk Atlas of European Butterflies. BioRisk, 0, 1, 1-712.	0.2	196
28	Precipitation controls Sahel greening trend. Geophysical Research Letters, 2005, 32, .	1.5	195
29	Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 2016, 7, 13965.	5.8	180
30	USING A GENERALIZED VEGETATION MODEL TO SIMULATE VEGETATION DYNAMICS IN NORTHEASTERN USA. Ecology, 2004, 85, 519-530.	1.5	177
31	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	3.3	159
32	The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geoscientific Model Development, 2017, 10, 1175-1197.	1.3	159
33	Next generation of elevated [CO ₂] experiments with crops: a critical investment for feeding the future world. Plant, Cell and Environment, 2008, 31, 1317-1324.	2.8	154
34	Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecology and Biogeography, 2012, 21, 88-99.	2.7	152
35	Intergenerational inequities in exposure to climate extremes. Science, 2021, 374, 158-160.	6.0	148
36	Connecting dynamic vegetation models to data – an inverse perspective. Journal of Biogeography, 2012, 39, 2240-2252.	1.4	144

#	Article	IF	CITATIONS
37	Levers and leverage points for pathways to sustainability. People and Nature, 2020, 2, 693-717.	1.7	141
38	Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Global Ecology and Biogeography, 2006, 15, 567-577.	2.7	140
39	ORIGINAL ARTICLE: Towards an understanding of the Holocene distribution of Fagus sylvatica L Journal of Biogeography, 2006, 34, 118-131.	1.4	136
40	A global inventory of N ₂ O emissions from tropical rainforest soils using a detailed biogeochemical model. Global Biogeochemical Cycles, 2007, 21, .	1.9	136
41	Effects of human land-use on the global carbon cycle during the last 6,000Âyears. Vegetation History and Archaeobotany, 2008, 17, 605-615.	1.0	136
42	Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Global Change Biology, 2007, 13, 108-122.	4.2	135
43	Simulating past and future dynamics of natural ecosystems in the United States. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	127
44	Palms tracking climate change. Global Ecology and Biogeography, 2007, 16, 801-809.	2.7	126
45	Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia. Journal of Ecology, 2008, 96, 247-259.	1.9	122
46	THE IMPORTANCE OF AGE-RELATED DECLINE IN FOREST NPP FOR MODELING REGIONAL CARBON BALANCES. , 2006, 16, 1555-1574.		116
47	Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. Forest Ecology and Management, 2010, 259, 2160-2171.	1.4	112
48	CO ₂ inhibition of global terrestrial isoprene emissions: Potential implications for atmospheric chemistry. Geophysical Research Letters, 2007, 34, .	1.5	111
49	Tree Migration-Rates: Narrowing the Gap between Inferred Post-Glacial Rates and Projected Rates. PLoS ONE, 2013, 8, e71797.	1.1	110
50	Biodiversity-rich European grasslands: Ancient, forgotten ecosystems. Biological Conservation, 2018, 228, 224-232.	1.9	105
51	12,000-Years of fire regime drivers in the lowlands of Transylvania (Central-Eastern Europe): a data-model approach. Quaternary Science Reviews, 2013, 81, 48-61.	1.4	104
52	Last glacial vegetation of northern Eurasia. Quaternary Science Reviews, 2010, 29, 2604-2618.	1.4	103
53	Predicting longâ€ŧerm carbon sequestration in response to CO ₂ enrichment: How and why do current ecosystem models differ?. Global Biogeochemical Cycles, 2015, 29, 476-495.	1.9	99
54	Disentangling the effects of climate and people on Sahel vegetation dynamics. Biogeosciences, 2009, 6, 469-477.	1.3	97

#	Article	IF	CITATIONS
55	Comprehensive ecosystem modelâ€data synthesis using multiple data sets at two temperate forest freeâ€air CO ₂ enrichment experiments: Model performance at ambient CO ₂ concentration. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 937-964.	1.3	95
56	Tree mortality submodels drive simulated longâ€ŧerm forest dynamics: assessing 15 models from the stand to global scale. Ecosphere, 2019, 10, e02616.	1.0	93
57	Origin of the forest steppe and exceptional grassland diversity in Transylvania (centralâ€eastern) Tj ETQq1 1 0.	784314 rg 1.4	BT /Overlock
58	Using dynamic vegetation models to simulate plant range shifts. Ecography, 2014, 37, 1184-1197.	2.1	89
59	Is droughtâ€induced forest dieback globally increasing?. Journal of Ecology, 2015, 103, 31-43.	1.9	89
60	Links between Terrestrial Primary Production and Bacterial Production and Respiration in Lakes in a Climate Gradient in Subarctic Sweden. Ecosystems, 2008, 11, 367-376.	1.6	87
61	Effects of species composition, land surface cover, CO ₂ concentration and climate on isoprene emissions from European forests. Plant Biology, 2008, 10, 150-162.	1.8	87
62	Cross-realm assessment of climate change impacts on species' abundance trends. Nature Ecology and Evolution, 2017, 1, 67.	3.4	83
63	Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13294-13299.	3.3	82
64	7000-year human legacy of elevation-dependent European fire regimes. Quaternary Science Reviews, 2016, 132, 206-212.	1.4	70
65	Trends in biomass burning in the Carpathian region over the last 15,000 years. Quaternary Science Reviews, 2012, 45, 111-125.	1.4	69
66	Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth's Future, 2020, 8, e2020EF001616.	2.4	69
67	A physiological analogy of the niche for projecting the potential distribution of plants. Journal of Biogeography, 2012, 39, 2132-2145.	1.4	68
68	Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nature Communications, 2019, 10, 454.	5.8	68
69	Title is missing!. Climatic Change, 2001, 51, 307-347.	1.7	67
70	Last Millennium hydro-climate variability in Central–Eastern Europe (Northern Carpathians, Romania). Holocene, 2015, 25, 1179-1192.	0.9	65
71	Regional contribution to variability and trends of global gross primary productivity. Environmental Research Letters, 2017, 12, 105005.	2.2	65
72	Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. Forest Ecology and Management, 2017, 389, 15-26.	1.4	64

#	Article	IF	CITATIONS
73	Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics, 2019, 19, 12545-12567.	1.9	64
74	Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development, 2020, 13, 3299-3318.	1.3	63
75	Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quaternary Science Reviews, 2017, 169, 378-390.	1.4	61
76	A reference genome of the European beech (Fagus sylvatica L.). GigaScience, 2018, 7, .	3.3	58
77	The concerns of the young protesters are justified: A statement by <i>Scientists for Future</i> concerning the protests for more climate protection. Gaia, 2019, 28, 79-87.	0.3	56
78	Global ecosystems and fire: Multiâ€model assessment of fireâ€induced treeâ€cover and carbon storage reduction. Global Change Biology, 2020, 26, 5027-5041.	4.2	55
79	Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model. Biogeosciences, 2014, 11, 6131-6146.	1.3	54
80	Modelling CO2 Impacts on Forest Productivity. Current Forestry Reports, 2015, 1, 69-80.	3.4	54
81	An ecosystem modelâ€based estimate of changes in water availability differs from water proxies that are commonly used in species distribution models. Global Ecology and Biogeography, 2009, 18, 304-313.	2.7	52
82	Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences, 2020, 17, 1213-1230.	1.3	52
83	Reconstructing range dynamics and range fragmentation of European bison for the last 8000 years. Diversity and Distributions, 2012, 18, 47-59.	1.9	51
84	Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range. Journal of Ecology, 2017, 105, 1547-1561.	1.9	49
85	Biotic modifiers, environmental modulation and species distribution models. Journal of Biogeography, 2012, 39, 2179-2190.	1.4	48
86	Challenges in elevated CO2 experiments on forests. Trends in Plant Science, 2010, 15, 5-10.	4.3	46
87	The Contribution of Vegetation and Landscape Configuration for Predicting Environmental Change Impacts on Iberian Birds. PLoS ONE, 2011, 6, e29373.	1.1	46
88	Understanding the uncertainty in global forest carbon turnover. Biogeosciences, 2020, 17, 3961-3989.	1.3	45
89	A cross-taxon analysis of the impact of climate change on abundance trends in central Europe. Biological Conservation, 2015, 187, 41-50.	1.9	44
90	Global vegetation patterns of the past 140,000 years. Journal of Biogeography, 2020, 47, 2073-2090.	1.4	44

#	Article	IF	CITATIONS
91	Millennial Climatic Fluctuations Are Key to the Structure of Last Glacial Ecosystems. PLoS ONE, 2013, 8, e61963.	1.1	43
92	Tree and timberline shifts in the northern Romanian Carpathians during the Holocene and the responses to environmental changes. Quaternary Science Reviews, 2016, 134, 100-113.	1.4	43
93	Emergent climate and <scp>CO</scp> ₂ sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. Global Change Biology, 2017, 23, 2755-2767.	4.2	43
94	Challenging terrestrial biosphere models with data from the longâ€ŧerm multifactor Prairie Heating and <scp>CO</scp> ₂ Enrichment experiment. Global Change Biology, 2017, 23, 3623-3645.	4.2	42
95	Taxon and trait recognition from digitized herbarium specimens using deep convolutional neural networks. Botany Letters, 2018, 165, 377-383.	0.7	42
96	VEMAP Phase 2 bioclimatic database. I. Gridded historical (20th century) climate for modeling ecosystem dynamics across the conterminous USA. Climate Research, 2004, 27, 151-170.	0.4	42
97	Incorporating the effects of changes in vegetation functioning and CO ₂ on water availability in plant habitat models. Biology Letters, 2008, 4, 556-559.	1.0	41
98	Longâ€ŧerm population dynamics of a migrant bird suggests interaction of climate change and competition with resident species. Oikos, 2015, 124, 1151-1159.	1.2	41
99	Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Environmental Research Letters, 2017, 12, 085001.	2.2	41
100	Hydrologic resilience of the terrestrial biosphere. Geophysical Research Letters, 2005, 32, .	1.5	38
101	Predicting habitat affinities of plant species using commonly measured functional traits. Journal of Vegetation Science, 2017, 28, 1082-1095.	1.1	38
102	Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 2018, 13, 075001.	2.2	38
103	European emissions of isoprene and monoterpenes from the Last Glacial Maximum to present. Biogeosciences, 2009, 6, 2779-2797.	1.3	37
104	Potential impact of large ungulate grazers on <scp>A</scp> frican vegetation, carbon storage and fire regimes. Global Ecology and Biogeography, 2015, 24, 991-1002.	2.7	37
105	Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Global Change Biology, 2021, 27, 340-358.	4.2	36
106	Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecological Modelling, 2013, 263, 92-102.	1.2	35
107	Long-term land-cover/use change in a traditional farming landscape in Romania inferred from pollen data, historical maps and satellite images. Regional Environmental Change, 2017, 17, 2193-2207.	1.4	35
108	Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Global Change Biology, 2022, 28, 307-322.	4.2	33

#	Article	IF	CITATIONS
109	Risk assessment for Iberian birds under global change. Biological Conservation, 2013, 168, 192-200.	1.9	32
110	Intercontinental divergence in the climate envelope of major plant biomes. Global Ecology and Biogeography, 2015, 24, 324-334.	2.7	32
111	Effect of changing vegetation and precipitation on denudation – PartÂ2: Predicted landscape response to transient climate and vegetation cover over millennial to million-year timescales. Earth Surface Dynamics, 2018, 6, 859-881.	1.0	32
112	Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences, 2019, 16, 3883-3910.	1.3	32
113	A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. Journal of Biogeography, 2020, 47, 114-129.	1.4	32
114	Biodiversity postâ€2020: Closing the gap between global targets and nationalâ€level implementation. Conservation Letters, 2022, 15, e12848.	2.8	32
115	Benchmarking carbon fluxes of the ISIMIP2a biome models. Environmental Research Letters, 2017, 12, 045002.	2.2	30
116	On the potential vegetation feedbacks that enhance phosphorus availability – insights from a process-based model linking geological and ecological timescales. Biogeosciences, 2014, 11, 3661-3683.	1.3	29
117	Climate Extreme Versus Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and Precipitation. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005252.	1.3	29
118	A Continental-Scale Validation of Ecosystem Service Models. Ecosystems, 2019, 22, 1902-1917.	1.6	28
119	Hydrological conditions and carbon accumulation rates reconstructed from a mountain raised bog in the Carpathians: A multi-proxy approach. Catena, 2017, 152, 57-68.	2.2	27
120	Climate-vegetation modelling and fossil plant data suggest low atmospheric CO ₂ in the late Miocene. Climate of the Past, 2015, 11, 1701-1732.	1.3	26
121	Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Regional Environmental Change, 2019, 19, 251-266.	1.4	26
122	Effect of changing vegetation and precipitation on denudation – Part 1: Predicted vegetation composition and cover over the last 21 thousand years along the Coastal Cordillera of Chile. Earth Surface Dynamics, 2018, 6, 829-858.	1.0	25
123	Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. Environmental Research Letters, 2020, 15, 044006.	2.2	25
124	Impacts of changing frost regimes on Swedish forests: Incorporating cold hardiness in a regional ecosystem model. Ecological Modelling, 2010, 221, 303-313.	1.2	24
125	Refugee species: which historic baseline should inform conservation planning?. Diversity and Distributions, 2012, 18, 1258-1261.	1.9	24
126	How can we bring together empiricists and modellers in functional biodiversity research?. Basic and Applied Ecology, 2013, 14, 93-101.	1.2	24

#	Article	IF	CITATIONS
127	Modeling forest dynamics along climate gradients in Bolivia. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 758-775.	1.3	24
128	Ensembles of ecosystem service models can improve accuracy and indicate uncertainty. Science of the Total Environment, 2020, 747, 141006.	3.9	23
129	The sensitivity of wet and dry tropical forests to climate change in Bolivia. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 399-413.	1.3	22
130	Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytologist, 2021, 232, 551-566.	3.5	20
131	Detection and annotation of plant organs from digitised herbarium scans using deep learning. Biodiversity Data Journal, 2020, 8, e57090.	0.4	20
132	The transformation of the forest steppe in the lower Danube Plain of southeastern Europe: 6000Âyears of vegetation and land use dynamics. Biogeosciences, 2021, 18, 1081-1103.	1.3	19
133	Potential implications of future climate and landâ€cover changes for the fate and distribution of persistent organic pollutants in Europe. Global Ecology and Biogeography, 2012, 21, 64-74.	2.7	18
134	Cross-taxa generalities in the relationship between population abundance and ambient temperatures. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170870.	1.2	17
135	A Dynamic Model for Strategies and Dynamics of Plant Water-Potential Regulation Under Drought Conditions. Frontiers in Plant Science, 2020, 11, 373.	1.7	17
136	Effect of climate-driven changes in species composition on regional emission capacities of biogenic compounds. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	16
137	Continental climate gradients in North America and Western Eurasia before and after the closure of the Central American Seaway. Earth and Planetary Science Letters, 2017, 472, 120-130.	1.8	16
138	Regional adaptation of European beech (Fagus sylvatica) to drought in Central European conditions considering environmental suitability and economic implications. Regional Environmental Change, 2019, 19, 1159-1174.	1.4	15
139	Great uncertainties in modeling grazing impact on carbon sequestration: a multi-model inter-comparison in temperate Eurasian Steppe. Environmental Research Letters, 2018, 13, 075005.	2.2	14
140	Linking scales and disciplines: an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management. Climatic Change, 2019, 156, 139-150.	1.7	13
141	Combining European Earth Observation products with Dynamic Global Vegetation Models for estimating Essential Biodiversity Variables. International Journal of Digital Earth, 2020, 13, 262-277.	1.6	13
142	Species Richness-Environment Relationships of European Arthropods at Two Spatial Grains: Habitats and Countries. PLoS ONE, 2012, 7, e45875.	1.1	13
143	Determinants of local ant (Hymenoptera: Formicidae) species richness and activity density across Europe. Ecological Entomology, 2009, 34, 748-754.	1.1	12
144	Agro-climatic resources and challenges to food production in Cameroon. Geocarto International, 2011, 26, 251-273.	1.7	12

#	Article	IF	CITATIONS
145	Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy Approach. Forests, 2018, 9, 600.	0.9	12
146	Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53). Geoscientific Model Development, 2020, 13, 1285-1309.	1.3	12
147	A research framework for projecting ecosystem change in highly diverse tropical mountain ecosystems. Oecologia, 2021, 195, 589-600.	0.9	12
148	Modelling the potential distribution, net primary production and phenology of common ragweed with a physiological model. Journal of Biogeography, 2016, 43, 544-554.	1.4	11
149	Saturation of Clobal Terrestrial Carbon Sink Under a High Warming Scenario. Global Biogeochemical Cycles, 2021, 35, e2020GB006800.	1.9	11
150	The impact of climateâ€vegetation interactions on the onset of the Antarctic ice sheet. Geophysical Research Letters, 2014, 41, 1269-1276.	1.5	10
151	Climate Change Impacts on the Future of Forests in Great Britain. Frontiers in Environmental Science, 2021, 9, .	1.5	10
152	Restoring Broadleaved Forests in Southern Sweden as Climate Changes. World Forests, 2012, , 373-391.	0.1	10
153	MACIS: Minimisation of and Adaptation to Climate Change Impacts on Biodiversity. Gaia, 2008, 17, 393-395.	0.3	10
154	Water limitation prevails over energy in European diversity gradients of sheetweb spiders (Araneae:) Tj ETQq0 0	0 rgBT /O <u>1.2</u>	verlock 10 Tf
155	Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest. Earth System Dynamics, 2015, 6, 485-503.	2.7	8
156	Projected climatic changes lead to biome changes in areas of previously constant biome. Journal of Biogeography, 2021, 48, 2418-2428.	1.4	8
157	An R package facilitating sensitivity analysis, calibration and forward simulations with the LPJ-GUESS dynamic vegetation model. Environmental Modelling and Software, 2019, 111, 55-60.	1.9	7
158	Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Global Ecology and Biogeography, 2006, .	2.7	7
159	Forest responses to lastâ€millennium hydroclimate variability are governed by spatial variations in ecosystem sensitivity. Ecology Letters, 2021, 24, 498-508.	3.0	7
160	Exporting the ecological effects of climate change. EMBO Reports, 2008, 9, S28-33.	2.0	6
161	Vegetation biomass change in China in the 20th century: an assessment based on a combination of multi-model simulations and field observations. Environmental Research Letters, 2020, 15, 094026.	2.2	6
162	Why Would Plant Species Become Extinct Locally If Growing Conditions Improve?. International Journal of Biological Sciences, 2012, 8, 1121-1129.	2.6	4

#	Article	IF	CITATIONS
163	Reducing Uncertainties of Future Global Soil Carbon Responses to Climate and Land Use Change With Emergent Constraints. Global Biogeochemical Cycles, 2020, 34, e2020GB006589.	1.9	4
164	Comparing Process-Based Net Primary Productivity Models in a Mediterranean Watershed. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W2, 67-74.	0.2	4
165	Evaluating changes of biomass in global vegetation models: the role of turnover fluctuations and ENSO events. Environmental Research Letters, 2018, 13, 075002.	2.2	3
166	Environmental Impacts—Terrestrial Ecosystems. Regional Climate Studies, 2016, , 341-372.	1.2	2
167	Comparing correlative and process-based modelling approaches in a boreal forest identifies important areas for model development. Silva Fennica, 2017, 51, .	0.5	2
168	Macroecology meets IPBES. Frontiers of Biogeography, 2016, 7, .	0.8	0
169	A Workflow for Data Extraction from Digitized Herbarium Specimens. Biodiversity Information Science and Standards, 0, 3, .	0.0	0