Robert W Heath Jr

List of Publications by Citations

Source: https://exaly.com/author-pdf/4629636/robert-w-heath-jr-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

676 papers

39,696 citations

94 h-index 186 g-index

753 ext. papers

50,697 ext. citations

avg, IF

8.22 L-index

#	Paper	IF	Citations
676	Five disruptive technology directions for 5G. <i>IEEE Communications Magazine</i> , 2014 , 52, 74-80	9.1	2754
675	Spatially Sparse Precoding in Millimeter Wave MIMO Systems. <i>IEEE Transactions on Wireless Communications</i> , 2014 , 13, 1499-1513	9.6	1746
674	MIMO Precoding and Combining Solutions for Millimeter-Wave Systems. <i>IEEE Communications Magazine</i> , 2014 , 52, 122-131	9.1	1490
673	Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2014 , 8, 831-846	7.5	1335
672	An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2016 , 10, 436-453	7.5	1263
671	. IEEE Transactions on Information Theory, 2003 , 49, 2735-2747	2.8	868
670	An overview of limited feedback in wireless communication systems. <i>IEEE Journal on Selected Areas in Communications</i> , 2008 , 26, 1341-1365	14.2	824
669	Coverage and Rate Analysis for Millimeter-Wave Cellular Networks. <i>IEEE Transactions on Wireless Communications</i> , 2015 , 14, 1100-1114	9.6	793
668	. IEEE Transactions on Wireless Communications, 2015 , 14, 6481-6494	9.6	663
667	Shifting the MIMO Paradigm. IEEE Signal Processing Magazine, 2007, 24, 36-46	9.4	656
666	. IEEE Journal on Selected Areas in Communications, 2016 , 34, 998-1009	14.2	563
665	Grassmannian frames with applications to coding and communication. <i>Applied and Computational Harmonic Analysis</i> , 2003 , 14, 257-275	3.1	533
664	Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches?. <i>IEEE Access</i> , 2016 , 4, 247-267	3.5	458
663	Limited feedback unitary precoding for spatial multiplexing systems. <i>IEEE Transactions on Information Theory</i> , 2005 , 51, 2967-2976	2.8	418
662	. IEEE Transactions on Wireless Communications, 2014 , 13, 5070-5083	9.6	407
661	Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing 2016 , 54, 160-167		398
660	Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? 2014 , 52, 110-121		379

(2018-2001)

659	Antenna selection for spatial multiplexing systems with linear receivers. <i>IEEE Communications Letters</i> , 2001 , 5, 142-144	3.8	360
658	60 GHz wireless communications: Emerging requirements and design recommendations. <i>IEEE Vehicular Technology Magazine</i> , 2007 , 2, 41-50	9.9	337
657	. IEEE Transactions on Communications, 2016 , 1-1	6.9	330
656	Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization. <i>IEEE Transactions on Signal Processing</i> , 2006 , 54, 3658-3663	4.8	330
655	Modeling Heterogeneous Network Interference Using Poisson Point Processes. <i>IEEE Transactions on Signal Processing</i> , 2013 , 61, 4114-4126	4.8	326
654	What is the value of limited feedback for MIMO channels? 2004 , 42, 54-59		321
653	Networked MIMO with clustered linear precoding. <i>IEEE Transactions on Wireless Communications</i> , 2009 , 8, 1910-1921	9.6	320
652	Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems. <i>IEEE Transactions on Communications</i> , 2016 , 64, 1801-1818	6.9	294
651	Designing structured tight frames via an alternating projection method. <i>IEEE Transactions on Information Theory</i> , 2005 , 51, 188-209	2.8	279
650	Transmit selection in spatial multiplexing systems. <i>IEEE Communications Letters</i> , 2002 , 6, 491-493	3.8	274
649	. IEEE Journal on Selected Areas in Communications, 2015 , 33, 1-13	14.2	265
648	Near Maximum-Likelihood Detector and Channel Estimator for Uplink Multiuser Massive MIMO Systems With One-Bit ADCs. <i>IEEE Transactions on Communications</i> , 2016 , 64, 2005-2018	6.9	252
647	Interference alignment via alternating minimization 2009,		251
646	Switching between diversity and multiplexing in MIMO systems. <i>IEEE Transactions on Communications</i> , 2005 , 53, 962-968	6.9	246
645	Capacity Analysis of One-Bit Quantized MIMO Systems With Transmitter Channel State Information. <i>IEEE Transactions on Signal Processing</i> , 2015 , 63, 5498-5512	4.8	241
644	Adaptive modulation and MIMO coding for broadband wireless data networks 2002 , 40, 108-115		231
643	Overcoming interference in spatial multiplexing MIMO cellular networks. <i>IEEE Wireless Communications</i> , 2007 , 14, 95-104	13.4	221
642	. IEEE Transactions on Vehicular Technology, 2018 , 67, 3012-3027	6.8	218

641	MIMO Relaying With Linear Processing for Multiuser Transmission in Fixed Relay Networks. <i>IEEE Transactions on Signal Processing</i> , 2008 , 56, 727-738	4.8	217
640	Coverage and capacity of millimeter-wave cellular networks 2014 , 52, 70-77		213
639	Dynamic Subarrays for Hybrid Precoding in Wideband mmWave MIMO Systems. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 2907-2920	9.6	200
638	. IEEE Transactions on Information Theory, 2013 , 59, 5213-5226	2.8	200
637	Multiuser MIMO in Distributed Antenna Systems With Out-of-Cell Interference. <i>IEEE Transactions on Signal Processing</i> , 2011 , 59, 4885-4899	4.8	196
636	Hybrid precoding for millimeter wave cellular systems with partial channel knowledge 2013,		195
635	Uplink Performance of Wideband Massive MIMO With One-Bit ADCs. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 87-100	9.6	194
634	Equal gain transmission in multiple-input multiple-output wireless systems. <i>IEEE Transactions on Communications</i> , 2003 , 51, 1102-1110	6.9	193
633	Channel Estimation for Hybrid Architecture-Based Wideband Millimeter Wave Systems. <i>IEEE Journal on Selected Areas in Communications</i> , 2017 , 35, 1996-2009	14.2	190
632	Cooperative Algorithms for MIMO Interference Channels. <i>IEEE Transactions on Vehicular Technology</i> , 2011 , 60, 206-218	6.8	190
631	Effects of channel aging in massive MIMO systems. <i>Journal of Communications and Networks</i> , 2013 , 15, 338-351	4.1	189
630	. IEEE Transactions on Signal Processing, 2002 , 50, 2429-2441	4.8	181
629	The future of WiMAX: Multihop relaying with IEEE 802.16j 2009 , 47, 104-111		177
628	Antenna Subset Modulation for Secure Millimeter-Wave Wireless Communication. <i>IEEE Transactions on Communications</i> , 2013 , 61, 3231-3245	6.9	171
627	Channel Estimation in Broadband Millimeter Wave MIMO Systems With Few-Bit ADCs. <i>IEEE Transactions on Signal Processing</i> , 2018 , 66, 1141-1154	4.8	167
626	Design and Evaluation of a Reconfigurable Antenna Array for MIMO Systems. <i>IEEE Transactions on Antennas and Propagation</i> , 2008 , 56, 869-881	4.9	162
625	Systematic Codebook Designs for Quantized Beamforming in Correlated MIMO Channels. <i>IEEE Journal on Selected Areas in Communications</i> , 2007 , 25, 1091-1100	14.2	162
624	Relay Architectures for 3GPP LTE-Advanced. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2009 , 2009,	3.2	159

(2016-2005)

623	Limited feedback unitary precoding for orthogonal space-time block codes. <i>IEEE Transactions on Signal Processing</i> , 2005 , 53, 64-73	4.8	153	
622	On the existence of equiangular tight frames. <i>Linear Algebra and Its Applications</i> , 2007 , 426, 619-635	0.9	152	
621	Channel estimation in millimeter wave MIMO systems with one-bit quantization 2014,		150	
620	60 GHz Wireless: Up Close and Personal. <i>IEEE Microwave Magazine</i> , 2010 , 11, 44-50	1.2	145	
619	Blind Channel Estimation for MIMO-OFDM Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2007 , 56, 670-685	6.8	143	
618	Simplified Spatial Correlation Models for Clustered MIMO Channels With Different Array Configurations. <i>IEEE Transactions on Vehicular Technology</i> , 2007 , 56, 1924-1934	6.8	143	
617	Compressed sensing based multi-user millimeter wave systems: How many measurements are needed? 2015 ,		141	
616	. IEEE Transactions on Vehicular Technology, 2009 , 58, 152-164	6.8	140	
615	Multimode antenna selection for spatial multiplexing systems with linear receivers. <i>IEEE Transactions on Signal Processing</i> , 2005 , 53, 3042-3056	4.8	138	
614	Is the PHY layer dead? 2011 , 49, 159-165		134	
613	Exploiting input cyclostationarity for blind channel identification in OFDM systems. <i>IEEE Transactions on Signal Processing</i> , 1999 , 47, 848-856	4.8	133	
612	Low complexity precoding for large millimeter wave MIMO systems 2012,		131	
611	Block diagonalization for multi-user MIMO with other-cell interference. <i>IEEE Transactions on Wireless Communications</i> , 2008 , 7, 2671-2681	9.6	131	
610	A current perspective on distributed antenna systems for the downlink of cellular systems 2013 , 51, 161-167		127	
609	Rethinking information theory for mobile ad hoc networks 2008 , 46, 94-101		127	
608	MIMO Interference Alignment Over Correlated Channels With Imperfect CSI. <i>IEEE Transactions on Signal Processing</i> , 2011 , 59, 2783-2794	4.8	125	
607	Adaptive Limited Feedback for Sum-Rate Maximizing Beamforming in Cooperative Multicell Systems. <i>IEEE Transactions on Signal Processing</i> , 2011 , 59, 800-811	4.8	125	
606	Performance Analysis of Outdoor mmWave Ad Hoc Networks. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 4065-4079	4.8	124	

605	Frequency-Domain Compressive Channel Estimation for Frequency-Selective Hybrid Millimeter Wave MIMO Systems. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 2946-2960	9.6	123
604	Channel estimation and hybrid combining for mmWave: Phase shifters or switches? 2015,		122
603	The Impact of Beamwidth on Temporal Channel Variation in Vehicular Channels and Its Implications. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 5014-5029	6.8	120
602	Hybrid Architectures With Few-Bit ADC Receivers: Achievable Rates and Energy-Rate Tradeoffs. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 2274-2287	9.6	120
601	Interference Alignment with Analog Channel State Feedback. <i>IEEE Transactions on Wireless Communications</i> , 2012 , 11, 626-636	9.6	120
600	Multiuser diversity for MIMO wireless systems with linear receivers 2001,		119
599	Coordinated beamforming with limited feedback in the MIMO broadcast channel. <i>IEEE Journal on Selected Areas in Communications</i> , 2008 , 26, 1505-1515	14.2	117
598	The practical challenges of interference alignment. <i>IEEE Wireless Communications</i> , 2013 , 20, 35-42	13.4	116
597	Device-to-Device Millimeter Wave Communications: Interference, Coverage, Rate, and Finite Topologies. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 6175-6188	9.6	112
596	Millimeter Wave Vehicular Communications: A Survey. <i>Foundations and Trends in Networking</i> , 2016 , 10, 1-113		111
595	Nonregenerative MIMO Relaying With Optimal Transmit Antenna Selection. <i>IEEE Signal Processing Letters</i> , 2008 , 15, 421-424	3.2	111
595 594		3.29.6	107
	Letters, 2008, 15, 421-424 Low Complexity Hybrid Precoding Strategies for Millimeter Wave Communication Systems. <i>IEEE</i>		
594	Letters, 2008, 15, 421-424 Low Complexity Hybrid Precoding Strategies for Millimeter Wave Communication Systems. IEEE Transactions on Wireless Communications, 2016, 15, 8380-8393	9.6	107
594 593	Letters, 2008, 15, 421-424 Low Complexity Hybrid Precoding Strategies for Millimeter Wave Communication Systems. IEEE Transactions on Wireless Communications, 2016, 15, 8380-8393 . IEEE Transactions on Information Theory, 2011, 57, 4219-4234 Limited feedback diversity techniques for correlated channels. IEEE Transactions on Vehicular	9.6 2.8 6.8	107
594 593 592	Letters, 2008, 15, 421-424 Low Complexity Hybrid Precoding Strategies for Millimeter Wave Communication Systems. IEEE Transactions on Wireless Communications, 2016, 15, 8380-8393 . IEEE Transactions on Information Theory, 2011, 57, 4219-4234 Limited feedback diversity techniques for correlated channels. IEEE Transactions on Vehicular Technology, 2006, 55, 718-722	9.6 2.8 6.8	107
594 593 592 591	Letters, 2008, 15, 421-424 Low Complexity Hybrid Precoding Strategies for Millimeter Wave Communication Systems. IEEE Transactions on Wireless Communications, 2016, 15, 8380-8393 . IEEE Transactions on Information Theory, 2011, 57, 4219-4234 Limited feedback diversity techniques for correlated channels. IEEE Transactions on Vehicular Technology, 2006, 55, 718-722 Multimode precoding for MIMO wireless systems. IEEE Transactions on Signal Processing, 2005, 53, 3674 Secure Communications in Millimeter Wave Ad Hoc Networks. IEEE Transactions on Wireless	9.6 2.8 6.8	107 104 104

(2015-2005)

587	Opportunistic feedback for downlink multiuser diversity. IEEE Communications Letters, 2005, 9, 948-950	3.8	101
586	. IEEE Transactions on Signal Processing, 2002 , 50, 96-109	4.8	101
585	Beam tracking for mobile millimeter wave communication systems 2016 ,		97
584	Constructing Packings in Grassmannian Manifolds via Alternating Projection. <i>Experimental Mathematics</i> , 2008 , 17, 9-35	0.5	96
583	Space Division Multiple Access With a Sum Feedback Rate Constraint. <i>IEEE Transactions on Signal Processing</i> , 2007 , 55, 3879-3891	4.8	96
582	Spatial Interference Cancellation for Multiantenna Mobile Ad Hoc Networks. <i>IEEE Transactions on Information Theory</i> , 2012 , 58, 1660-1676	2.8	92
581	Interpolation based transmit beamforming for MIMO-OFDM with limited feedback. <i>IEEE Transactions on Signal Processing</i> , 2005 , 53, 4125-4135	4.8	92
580	Maximum Sum-Rate Interference Alignment Algorithms for MIMO Channels 2010 ,		88
579	Millimeter-wave gigabit broadband evolution toward 5G: fixed access and backhaul 2016 , 54, 138-144		88
578	Where, When, and How mmWave is Used in 5G and Beyond. <i>IEICE Transactions on Electronics</i> , 2017 , E100.C, 790-808	0.4	87
577	. IEEE Transactions on Vehicular Technology, 2018 , 67, 4042-4058	6.8	85
576	Millimeter Wave Energy Harvesting. IEEE Transactions on Wireless Communications, 2016, 15, 6048-6062	9.6	85
575	. IEEE Journal on Selected Topics in Signal Processing, 2018 , 12, 353-367	7.5	84
574	Coverage and capacity in mmWave cellular systems 2012 ,		84
573	Multi-Mode Transmission for the MIMO Broadcast Channel with Imperfect Channel State Information. <i>IEEE Transactions on Communications</i> , 2011 , 59, 803-814	6.9	83
572	Rate bounds on SSIM index of quantized images. <i>IEEE Transactions on Image Processing</i> , 2008 , 17, 1624-3	39 .7	83
571	Radar aided beam alignment in MmWave V2I communications supporting antenna diversity 2016,		83
570	Spectral Efficiency of Dynamic Coordinated Beamforming: A Stochastic Geometry Approach. <i>IEEE Transactions on Wireless Communications</i> , 2015 , 14, 230-241	9.6	82

569	Exploiting Spatial Channel Covariance for Hybrid Precoding in Massive MIMO Systems. <i>IEEE Transactions on Signal Processing</i> , 2017 , 65, 3818-3832	4.8	81
568	On the Overhead of Interference Alignment: Training, Feedback, and Cooperation. <i>IEEE Transactions on Wireless Communications</i> , 2012 , 11, 4192-4203	9.6	80
567	Performance analysis of maximum ratio combining with imperfect channel estimation in the presence of cochannel interferences. <i>IEEE Transactions on Wireless Communications</i> , 2009 , 8, 1080-1085	9.6	8o
566	2012,		79
565	Adaptation in Convolutionally Coded MIMO-OFDM Wireless Systems Through Supervised Learning and SNR Ordering. <i>IEEE Transactions on Vehicular Technology</i> , 2010 , 59, 114-126	6.8	79
564	Adaptive MIMO transmission techniques for broadband wireless communication systems [Topics in Wireless Communications]. <i>IEEE Communications Magazine</i> , 2010 , 48, 112-118	9.1	78
563	Hybrid MMSE Precoding and Combining Designs for mmWave Multiuser Systems. <i>IEEE Access</i> , 2017 , 5, 19167-19181	3.5	76
562	Transmit Selection Diversity for Unitary Precoded Multiuser Spatial Multiplexing Systems With Linear Receivers. <i>IEEE Transactions on Signal Processing</i> , 2007 , 55, 1159-1171	4.8	75
561	Channel Estimation for Orthogonal Time Frequency Space (OTFS) Massive MIMO. <i>IEEE Transactions on Signal Processing</i> , 2019 , 67, 4204-4217	4.8	74
560	Adaptive Bit Partitioning for Multicell Intercell Interference Nulling With Delayed Limited Feedback. <i>IEEE Transactions on Signal Processing</i> , 2011 , 59, 3824-3836	4.8	74
559	Interference Coordination: Random Clustering and Adaptive Limited Feedback. <i>IEEE Transactions on Signal Processing</i> , 2013 , 61, 1822-1834	4.8	73
558	Opportunistic Space-Division Multiple Access With Beam Selection. <i>IEEE Transactions on Communications</i> , 2007 , 55, 2371-2380	6.9	73
557	Benefit of pattern diversity via two-element array of circular patch antennas in indoor clustered MIMO channels. <i>IEEE Transactions on Communications</i> , 2006 , 54, 943-954	6.9	73
556	Multibeam for Joint Communication and Radar Sensing Using Steerable Analog Antenna Arrays. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 671-685	6.8	73
555	Limited Feedback Beamforming Over Temporally-Correlated Channels. <i>IEEE Transactions on Signal Processing</i> , 2009 , 57, 1959-1975	4.8	72
554	. IEEE Transactions on Vehicular Technology, 2010 , 59, 4309-4321	6.8	71
553	Initial Beam Association in Millimeter Wave Cellular Systems: Analysis and Design Insights. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 2807-2821	9.6	70
552	High SNR capacity of millimeter wave MIMO systems with one-bit quantization 2014 ,		70

(2000-2015)

551	. IEEE Transactions on Wireless Communications, 2015, 14, 3337-3351	9.6	69
550	Transmission Capacity of Ad-hoc Networks With Multiple Antennas Using Transmit Stream Adaptation and Interference Cancellation. <i>IEEE Transactions on Information Theory</i> , 2012 , 58, 780-792	2.8	68
549	. IEEE Transactions on Communications, 2016 , 64, 3981-3995	6.9	66
548	Design of linear equalizers optimized for the structural similarity index. <i>IEEE Transactions on Image Processing</i> , 2008 , 17, 857-72	8.7	66
547	Foundations of MIMO Communication 2018,		66
546	5G MIMO Data for Machine Learning: Application to Beam-Selection Using Deep Learning 2018 ,		66
545	The viability of distributed antennas for massive MIMO systems 2013,		65
544	Artificial-Noise-Aided Secure Multi-Antenna Transmission With Limited Feedback. <i>IEEE Transactions on Wireless Communications</i> , 2015 , 14, 2742-2754	9.6	65
543	Auxiliary Beam Pair Enabled AoD and AoA Estimation in Closed-Loop Large-Scale Millimeter-Wave MIMO Systems. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 4770-4785	9.6	64
542	One-Bit Sphere Decoding for Uplink Massive MIMO Systems With One-Bit ADCs. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 4509-4521	9.6	64
541	Grassmannian Differential Limited Feedback for Interference Alignment. <i>IEEE Transactions on Signal Processing</i> , 2012 , 60, 6481-6494	4.8	61
540	. IEEE Transactions on Vehicular Technology, 2007 , 56, 619-630	6.8	61
539	Opportunistic Feedback for Multiuser MIMO Systems With Linear Receivers. <i>IEEE Transactions on Communications</i> , 2007 , 55, 1020-1032	6.9	60
538	Simulation of MIMO channel capacity with antenna polarization diversity. <i>IEEE Transactions on Wireless Communications</i> , 2005 , 4, 1869-1873	9.6	60
537	Modeling the timevarying subjective quality of HTTP video streams with rate adaptations. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 2206-21	8.7	59
536	. IEEE Transactions on Wireless Communications, 2007 , 6, 2040-2045	9.6	59
535	Millimeter Wave Networked Wearables in Dense Indoor Environments. <i>IEEE Access</i> , 2016 , 4, 1205-1221	3.5	59
534	Blind identification of multichannel FIR blurs and perfect image restoration. <i>IEEE Transactions on Image Processing</i> , 2000 , 9, 1877-96	8.7	58

533	Block Diagonalized Vector Perturbation for Multiuser MIMO Systems. <i>IEEE Transactions on Wireless Communications</i> , 2008 , 7, 4051-4057	9.6	57
532	. IEEE Transactions on Vehicular Technology, 2017 , 66, 8139-8151	6.8	56
531	. IEEE Transactions on Vehicular Technology, 2018 , 67, 7086-7100	6.8	56
530	Interference in finite-sized highly dense millimeter wave networks 2015,		56
529	Investigating the IEEE 802.11ad Standard for Millimeter Wave Automotive Radar 2015 ,		56
528	Low complexity hybrid sparse precoding and combining in millimeter wave MIMO systems 2015,		56
527	Coordinated Beamforming for the Multiuser MIMO Broadcast Channel With Limited Feedforward. <i>IEEE Transactions on Signal Processing</i> , 2008 , 56, 6044-6056	4.8	56
526	Millimeter-Wave Communication with Out-of-Band Information 2017 , 55, 140-146		55
525	Cooperative Algorithms for MIMO Amplify-and-Forward Relay Networks. <i>IEEE Transactions on Signal Processing</i> , 2013 , 61, 1272-1287	4.8	55
524	. IEEE Transactions on Communications, 2009 , 57, 2633-2644	6.9	55
523	Spatial multiplexing in correlated fading via the virtual channel representation. <i>IEEE Journal on Selected Areas in Communications</i> , 2003 , 21, 856-866	14.2	55
522	OFDM power loading using limited feedback. <i>IEEE Transactions on Vehicular Technology</i> , 2005 , 54, 1773	-67880	55
521	Massive MIMO Combining with Switches. <i>IEEE Wireless Communications Letters</i> , 2016 , 5, 232-235	5.9	54
520	Optimization of Power Transfer Efficiency and Energy Efficiency for Wireless-Powered Systems With Massive MIMO. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 7159-7172	9.6	54
519	Multimode Transmission for Multiuser MIMO Systems With Block Diagonalization. <i>IEEE Transactions on Signal Processing</i> , 2008 , 56, 3294-3302	4.8	53
518	. IEEE Transactions on Signal Processing, 2006 , 54, 4730-4740	4.8	53
517	Delay-Constrained Video Transmission: Quality-Driven Resource Allocation and Scheduling. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2015 , 9, 60-75	7.5	52
516	2018,		52

(2018-2018)

Channel Feedback Based on AoD-Adaptive Subspace Codebook in FDD Massive MIMO Systems. <i>IEEE Transactions on Communications</i> , 2018 , 66, 5235-5248	6.9	51	
Using random shape theory to model blockage in random cellular networks 2012 ,		51	
Beam design for beam switching based millimeter wave vehicle-to-infrastructure communications 2016 ,		51	
Coverage analysis for millimeter wave cellular networks with blockage effects 2013,		50	
Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization. <i>Eurasip Journal on Advances in Signal Processing</i> , 2009 , 2009,	1.9	50	•
Channel Adaptive Quantization for Limited Feedback MIMO Beamforming Systems. <i>IEEE Transactions on Signal Processing</i> , 2006 , 54, 4717-4729	4.8	50	
Multimode precoding in millimeter wave MIMO transmitters with multiple antenna sub-arrays 2013		49	
Performance Analysis of Quantized Beamforming MIMO Systems. <i>IEEE Transactions on Signal Processing</i> , 2006 , 54, 4753-4766	4.8	49	
On quasi-orthogonal signatures for CDMA systems. <i>IEEE Transactions on Information Theory</i> , 2006 , 52, 1217-1226	2.8	48	
Online Learning for Position-Aided Millimeter Wave Beam Training. <i>IEEE Access</i> , 2019 , 7, 30507-30526	3.5	47	
. IEEE Transactions on Aerospace and Electronic Systems, 2020 , 56, 1926-1941	3.7	47	
A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-Dense Networks 2018 , 56, 49-55		47	
Finite-step algorithms for constructing optimal CDMA signature sequences. <i>IEEE Transactions on Information Theory</i> , 2004 , 50, 2916-2921	2.8	47	
Basic Relationship between Channel Coherence Time and Beamwidth in Vehicular Channels 2015,		45	
. IEEE Transactions on Wireless Communications, 2011 , 10, 1798-1809	9.6	45	
LIDAR Data for Deep Learning-Based mmWave Beam-Selection. <i>IEEE Wireless Communications Letters</i> , 2019 , 8, 909-912	5.9	45	
An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2021 , 1-1	7.5	45	
Macrodiversity in Cellular Networks With Random Blockages. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 996-1010	9.6	44	
	Using random shape theory to model blockage in random cellular networks 2012, Beam design for beam switching based millimeter wave vehicle-to-infrastructure communications 2016, Coverage analysis for millimeter wave cellular networks with blockage effects 2013, Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization. Eurasip Journal on Advances in Signal Processing, 2009, 2009, Channel Adaptive Quantization for Limited Feedback MIMO Beamforming Systems. IEEE Transactions on Signal Processing, 2006, 54, 4717-4729 Multimode precoding in millimeter wave MIMO transmitters with multiple antenna sub-arrays 2013 Performance Analysis of Quantized Beamforming MIMO Systems. IEEE Transactions on Signal Processing, 2006, 54, 4753-4766 On quasi-orthogonal signatures for CDMA systems. IEEE Transactions on Information Theory, 2006, 52, 1217-1226 Online Learning for Position-Aided Millimeter Wave Beam Training. IEEE Access, 2019, 7, 30507-30526 IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 1926-1941 A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-Dense Networks 2018, 56, 49-55 Finite-step algorithms for constructing optimal CDMA signature sequences. IEEE Transactions on Information Theory, 2004, 50, 2916-2921 Basic Relationship between Channel Coherence Time and Beamwidth in Vehicular Channels 2015, IEEE Transactions on Wireless Communications, 2011, 10, 1798-1809 LIDAR Data for Deep Learning-Based mmWave Beam-Selection. IEEE Wireless Communications Letters, 2019, 8, 909-912 An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing. IEEE Journal on Selected Topics in Signal Processing, 2021, 1-1 Macrodiversity in Cellular Networks With Random Blockages. IEEE Transactions on Wireless	Using random shape theory to model blockage in random cellular networks 2012, Beam design for beam switching based millimeter wave vehicle-to-infrastructure communications 2016, Coverage analysis for millimeter wave cellular networks with blockage effects 2013, Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization. Eurasip Journal on Advances in Signal Processing, 2009, 2009, Channel Adaptive Quantization for Limited Feedback MIMO Beamforming Systems. IEEE Transactions on Signal Processing, 2006, 54, 4717-4729 Multimode precoding in millimeter wave MIMO transmitters with multiple antenna sub-arrays 2013 Performance Analysis of Quantized Beamforming MIMO Systems. IEEE Transactions on Signal Processing, 2006, 54, 4753-4766 On quasi-orthogonal signatures for CDMA systems. IEEE Transactions on Information Theory, 2006, 52, 1217-1226 Online Learning for Position-Aided Millimeter Wave Beam Training. IEEE Access, 2019, 7, 30507-30526 3.5 IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 1926-1941 3.7 A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-Dense Networks 2018, 56, 49-55 Finite-step algorithms for constructing optimal CDMA signature sequences. IEEE Transactions on Information Theory, 2004, 50, 2916-2921 Basic Relationship between Channel Coherence Time and Beamwidth in Vehicular Channels 2015, IEEE Transactions on Wireless Communications, 2011, 10, 1798-1809 9.6 LIDAR Data for Deep Learning-Based mmWave Beam-Selection. IEEE Wireless Communications Letters, 2019, 8, 909-912 An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing. IEEE Journal on Selected Topics in Signal Processing, 2021, 1-1 Macrodiversity in Cellular Networks With Random Blockages. IEEE Transactions on Wireless	Using random shape theory to model blockage in random cellular networks 2012, Beam design for beam switching based millimeter wave vehicle-to-infrastructure communications 2016, Coverage analysis for millimeter wave cellular networks with blockage effects 2013, 50 Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization. Eurosip Journal on Advances in Signal Processing, 2009, 2009, Channel Adaptive Quantization for Limited Feedback MIMO Beamforming Systems. IEEE Transactions on Signal Processing, 2006, 54, 4717-4729 Multimode precoding in millimeter wave MIMO transmitters with multiple antenna sub-arrays 2013 Performance Analysis of Quantized Beamforming MIMO Systems. IEEE Transactions on Signal Processing, 2006, 54, 4753-4766 On quasi-orthogonal signatures for CDMA systems. IEEE Transactions on Information Theory, 2006, 52, 1217-1226 Online Learning for Position-Aided Millimeter Wave Beam Training. IEEE Access, 2019, 7, 30507-30526 3.5 47 IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 1926-1941 3.7 47 A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-Dense Networks 2018, 56, 49-55 Finite-step algorithms for constructing optimal CDMA signature sequences. IEEE Transactions on Information Theory, 2004, 50, 2916-2921 Basic Relationship between Channel Coherence Time and Beamwidth in Vehicular Channels 2015, 45 LIEEE Transactions on Wireless Communications, 2011, 10, 1798-1809 96 45 LIDAR Data for Deep Learning-Based mmWave Beam-Selection. IEEE Wireless Communications Letters, 2019, 8, 309-912 An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing. IEEE Journal on Selected Topics in Signal Processing, 2021, 1-1 Macrodiversity in Cellular Networks With Random Blockages. IEEE Transactions on Wireless

497	Compressed channel feedback for correlated massive MIMO systems. <i>Journal of Communications and Networks</i> , 2016 , 18, 95-104	4.1	44
496	Dictionary-free hybrid precoders and combiners for mmWave MIMO systems 2015,		44
495	Interference Aware-Coordinated Beamforming in a Multi-Cell System. <i>IEEE Transactions on Wireless Communications</i> , 2012 , 11, 3692-3703	9.6	44
494	A Cross-Layer Design for Perceptual Optimization Of H.264/SVC with Unequal Error Protection. <i>IEEE Journal on Selected Areas in Communications</i> , 2012 , 30, 1157-1171	14.2	44
493	Analyzing Uplink SINR and Rate in Massive MIMO Systems Using Stochastic Geometry. <i>IEEE Transactions on Communications</i> , 2016 , 64, 4592-4606	6.9	43
492	Network Coordinated Beamforming for Cell-Boundary Users: Linear and Nonlinear Approaches. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2009 , 3, 1094-1105	7.5	43
491	Kerdock Codes for Limited Feedback Precoded MIMO Systems. <i>IEEE Transactions on Signal Processing</i> , 2009 , 57, 3711-3716	4.8	43
490	Coordinated 3D Beamforming for Interference Management in Cellular Networks. <i>IEEE Transactions on Wireless Communications</i> , 2014 , 13, 5396-5410	9.6	42
489	Necessary and sufficient conditions for full diversity order in correlated Rayleigh fading beamforming and combining systems. <i>IEEE Transactions on Wireless Communications</i> , 2005 , 4, 20-23	9.6	42
488	. IEEE Transactions on Signal Processing, 2020 , 68, 715-730	4.8	42
487	Beam Switching for Millimeter Wave Communication to Support High Speed Trains 2015,		41
486	Analysis of self-body blocking effects in millimeter wave cellular networks 2014,		41
485	2009,		41
484	Quantization on the Grassmann Manifold. <i>IEEE Transactions on Signal Processing</i> , 2007 , 55, 4208-4216	4.8	41
483	Uplink Power Control in Multi-Cell Spatial Multiplexing Wireless Systems. <i>IEEE Transactions on Wireless Communications</i> , 2007 , 6, 2700-2711	9.6	40
482	Non-Stationarities in Extra-Large-Scale Massive MIMO. <i>IEEE Wireless Communications</i> , 2020 , 27, 74-80	13.4	39
481	. IEEE Transactions on Vehicular Technology, 2010 , 59, 4377-4387	6.8	37
480	. IEEE Transactions on Vehicular Technology, 2016 , 65, 8992-9005	6.8	36

479	MmWave Beam Prediction with Situational Awareness: A Machine Learning Approach 2018,		36
478	Achievable rates of multi-user millimeter wave systems with hybrid precoding 2015,		35
477	High-Resolution Angle Tracking for Mobile Wideband Millimeter-Wave Systems With Antenna Array Calibration. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 7173-7189	9.6	35
476	User Partitioning for Less Overhead in MIMO Interference Channels. <i>IEEE Transactions on Wireless Communications</i> , 2012 , 11, 592-603	9.6	34
475	. IEEE Journal on Selected Topics in Signal Processing, 2015 , 9, 22-36	7.5	33
474	Forward Collision Vehicular Radar With IEEE 802.11: Feasibility Demonstration Through Measurements. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 1404-1416	6.8	33
473	Rate analysis and feasibility of dynamic TDD in 5G cellular systems 2016 ,		33
472	. IEEE Access, 2019 , 7, 87479-87493	3.5	33
471	Millimeter wave cellular channel models for system evaluation 2014,		33
470	Spatial Channel Covariance Estimation for the Hybrid MIMO Architecture: A Compressive Sensing-Based Approach. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 8047-8062	9.6	33
469	Not too delayed CSIT achieves the optimal degrees of freedom 2012 ,		32
468	WLC38-5: Multi-Antenna Limited Feedback for Temporally-Correlated Channels: Feedback Compression. <i>IEEE Global Telecommunications Conference (GLOBECOM)</i> , 2006 ,		32
467	Capacity Scaling for MIMO Two-Way Relaying 2007 ,		32
466	Wireless Powered Dense Cellular Networks: How Many Small Cells Do We Need?. <i>IEEE Journal on Selected Areas in Communications</i> , 2017 , 35, 2010-2024	14.2	31
465	Secure communication in cellular networks: The benefits of millimeter wave mobile broadband 2014 ,		31
465 464			31
	2014,	9.6	

461	Relay Subset Selection in Wireless Networks Using Partial Decode-and-Forward Transmission. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 692-704	6.8	30
460	Progressive Refinement of Beamforming Vectors for High-Resolution Limited Feedback. <i>Eurasip Journal on Advances in Signal Processing</i> , 2009 , 2009,	1.9	30
459	Time-domain channel estimation for wideband millimeter wave systems with hybrid architecture 2017 ,		29
458	Ergodic capacity in mmWave ad hoc network with imperfect beam alignment 2015,		29
457	Performance Analysis of Cooperative Wireless Networks With Unreliable Backhaul Links. <i>IEEE Communications Letters</i> , 2015 , 19, 1386-1389	3.8	28
456	. IEEE Transactions on Information Theory, 2016 , 62, 1344-1359	2.8	28
455	Single-sided adaptive estimation of multi-path millimeter wave channels 2014,		28
454	Adaptive Quantization on a Grassmann-Manifold for Limited Feedback Beamforming Systems. <i>IEEE Transactions on Signal Processing</i> , 2013 , 61, 4450-4462	4.8	28
453	Ergodic Capacity of Spatial Multiplexing MIMO Systems with ZF Receivers for Log-Normal Shadowing and Rayleigh Fading Channels 2007 ,		28
452	Generalized Finite Algorithms for Constructing Hermitian Matrices with Prescribed Diagonal and Spectrum. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2005 , 27, 61-71	1.5	28
451	Receiver designs for Alamouti coded OFDM systems in fast fading channels. <i>IEEE Transactions on Wireless Communications</i> , 2005 , 4, 550-559	9.6	28
450	Rate bounds for MIMO relay channels using precoding 2005,		28
449	On the Optimal Feedback Rate in Interference-Limited Multi-Antenna Cellular Systems. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 5748-5762	9.6	28
448	Measurements of the 60 GHz UE to eNB Channel for Small Cell Deployments. <i>IEEE Wireless Communications Letters</i> , 2017 , 6, 178-181	5.9	27
447	Linear Receivers in Non-Stationary Massive MIMO Channels With Visibility Regions. <i>IEEE Wireless Communications Letters</i> , 2019 , 8, 885-888	5.9	27
446	. IEEE Communications Magazine, 2018 , 56, 196-203	9.1	27
445	Gains of Restricted Secondary Licensing in Millimeter Wave Cellular Systems. <i>IEEE Journal on Selected Areas in Communications</i> , 2016 , 34, 2935-2950	14.2	27
444	2012,		27

443	Online adaptive modulation and coding with support vector machines 2010 ,		27	
442	Compressive Sensing for Millimeter Wave Antenna Array Diagnosis. <i>IEEE Transactions on Communications</i> , 2018 , 66, 2708-2721	6.9	26	
441	. IEEE Transactions on Information Theory, 2014 , 60, 515-528	2.8	26	
440	The Impact of Channel Feedback on Opportunistic Relay Selection for Hybrid-ARQ in Wireless Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 1255-1268	6.8	26	
439	Early Results on Hydra: A Flexible MAC/PHY Multihop Testbed. <i>IEEE Vehicular Technology Conference</i> , 2007 ,	0.1	26	
438	. IEEE Transactions on Vehicular Technology, 2016 , 65, 6217-6231	6.8	25	
437	One-bit ADCs in wideband massive MIMO systems with OFDM transmission 2016,		25	
436	Energy-Efficient Massive MIMO: Wireless-Powered Communication, Multiuser MIMO with Hybrid Precoding, and Cloud Radio Access Network with Variable-Resolution ADCs. <i>IEEE Microwave Magazine</i> , 2017 , 18, 18-30	1.2	24	
435	Wirelessly Powered Communication Networks With Short Packets. <i>IEEE Transactions on Communications</i> , 2017 , 65, 5529-5543	6.9	24	
434	Estimating millimeter wave channels using out-of-band measurements 2016,		24	
433	Multi-Layer Precoding: A Potential Solution for Full-Dimensional Massive MIMO Systems. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 5810-5824	9.6	23	
432	Metrocell Antennas: The Positive Impact of a Narrow Vertical Beamwidth and Electrical Downtilt. <i>IEEE Vehicular Technology Magazine</i> , 2015 , 10, 51-59	9.9	23	
431	A Markov Decision Model for Adaptive Scheduling of Stored Scalable Videos. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2013 , 23, 1081-1095	6.4	23	
430	The performance of space-time block codes from coordinate interleaved orthogonal designs over nakagami-m fading channels. <i>IEEE Transactions on Communications</i> , 2009 , 57, 653-664	6.9	23	
429	. IEEE Transactions on Vehicular Technology, 2010 , 59, 2219-2231	6.8	23	
428	Interpolation-Based Multi-Mode Precoding for MIMO-OFDM Systems with Limited Feedback. <i>IEEE Transactions on Wireless Communications</i> , 2007 , 6, 1003-1013	9.6	23	
427	Space-time interference cancellation in MIMO-OFDM systems. <i>IEEE Transactions on Vehicular Technology</i> , 2005 , 54, 1802-1816	6.8	23	
426	Waveform Design and Accurate Channel Estimation for Frequency-Hopping MIMO Radar-Based Communications. <i>IEEE Transactions on Communications</i> , 2020 , 1-1	6.9	23	

425	Learning-Based Adaptive Transmission for Limited Feedback Multiuser MIMO-OFDM. <i>IEEE Transactions on Wireless Communications</i> , 2014 , 13, 3806-3820	9.6	22
424	. IEEE Transactions on Information Theory, 2013 , 59, 2882-2896	2.8	22
423	Position-aided millimeter wave V2I beam alignment: A learning-to-rank approach 2017,		22
422	Spectral efficiency limits in pilot-assisted cooperative communications 2012,		22
421	Modeling ordered subcarrier SNR in MIMO-OFDM wireless links. <i>Physical Communication</i> , 2011 , 4, 275-	2852	22
420	Limited feedback with joint CSI quantization for multicell cooperative generalized eigenvector beamforming 2010 ,		22
419	Using Higher Order Cyclostationarity to Identify Space-Time Block Codes 2008,		22
418	A joint source-channel distortion model for JPEG compressed images. <i>IEEE Transactions on Image Processing</i> , 2006 , 15, 1349-64	8.7	22
417	. IEEE Transactions on Communications, 2017, 65, 3962-3975	6.9	21
416	Adaptive hybrid precoding and combining in MmWave multiuser MIMO systems based on compressed covariance estimation 2015 ,		21
415	Coverage in dense millimeter wave cellular networks 2013,		21
414	Unequal power allocation for JPEG transmission over MIMO systems. <i>IEEE Transactions on Image Processing</i> , 2010 , 19, 410-21	8.7	21
413	Spatial channel covariance estimation for mmWave hybrid MIMO architecture 2016 ,		21
412	Millimeter Wave Power Transfer and Information Transmission 2015,		20
411	Opportunistic beam training with hybrid analog/digital codebooks for mmWave systems 2015,		20
410	Two-Way Transmission Capacity of Wireless Ad-hoc Networks. <i>IEEE Transactions on Wireless Communications</i> , 2011 , 10, 1966-1975	9.6	20
409	Transmission capacity of ad-hoc networks with multiple antennas using transmit stream adaptation and interference cancelation 2009 ,		20
408	A Linear Estimator Optimized for the Structural Similarity Index and its Application to Image Denoising 2006 ,		20

407	MmWave MU-MIMO for Aerial Networks 2018 ,		20
406	Optimality of Frequency Flat Precoding in Frequency Selective Millimeter Wave Channels. <i>IEEE Wireless Communications Letters</i> , 2017 , 6, 330-333	5.9	19
405	Advanced interference management technique: potentials and limitations. <i>IEEE Wireless Communications</i> , 2016 , 23, 30-38	13.4	19
404	Cooperative Base Station Coloring for Pair-Wise Multi-Cell Coordination. <i>IEEE Transactions on Communications</i> , 2016 , 64, 402-415	6.9	19
403	Grassmannian predictive coding for limited feedback multiuser MIMO systems 2011,		19
402	Joint source-channel distortion modeling for MPEG-4 video. <i>IEEE Transactions on Image Processing</i> , 2009 , 18, 90-105	8.7	19
401	Efficient Transmit Antenna Selection for Multiuser MIMO Systems with Block Diagonalization 2007,		19
400	Modeling and Analysis of MmWave V2X Networks With Vehicular Platoon Systems. <i>IEEE Journal on Selected Areas in Communications</i> , 2019 , 37, 2851-2866	14.2	19
399	Position and LIDAR-Aided mmWave Beam Selection using Deep Learning 2019,		18
398	. IEEE Transactions on Wireless Communications, 2019, 18, 3064-3077	9.6	18
397	Adaptive One-Bit Compressive Sensing with Application to Low-Precision Receivers at mmWave 2015 ,		18
396	Adaptive quantization on the Grassmann-manifold for limited feedback multi-user MIMO systems 2013 ,		18
395	MIMO Transceiver Designs for Spatial Sensing in Cognitive Radio Networks. <i>IEEE Transactions on Wireless Communications</i> , 2011 , 10, 3570-3576	9.6	18
394	On the Optimality of Linear Multiuser MIMO Beamforming for a Two-User Two-Input Multiple-Output Broadcast System. <i>IEEE Signal Processing Letters</i> , 2009 , 16, 117-120	3.2	18
393	An online learning framework for link adaptation in wireless networks 2009,		18
392	Non-Redundant Precoding-Based Blind and Semi-Blind Channel Estimation for MIMO Block Transmission With a Cyclic Prefix. <i>IEEE Transactions on Signal Processing</i> , 2008 , 56, 2509-2523	4.8	18
391	Opportunistic Relay Selection with Limited Feedback. IEEE Vehicular Technology Conference, 2007,	0.1	18
390	Leveraging Sensing at the Infrastructure for mmWave Communication. <i>IEEE Communications Magazine</i> , 2020 , 58, 84-89	9.1	18

389	Perceptive Mobile Networks: Cellular Networks With Radio Vision via Joint Communication and Radar Sensing. <i>IEEE Vehicular Technology Magazine</i> , 2021 , 16, 20-30	9.9	18
388	Asymptotic SINR for millimeter wave massive MIMO cellular networks 2015 ,		17
387	Inter-Operator Base Station Coordination in Spectrum-Shared Millimeter Wave Cellular Networks. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2018 , 4, 513-528	6.6	17
386	Single-user MIMO versus multi-user MIMO in distributed antenna systems with limited feedback. <i>Eurasip Journal on Advances in Signal Processing</i> , 2013 , 2013,	1.9	17
385	Blockage and Coverage Analysis with MmWave Cross Street BSs Near Urban Intersections 2017,		17
384	Link Adaptation with Position/Motion Information in Vehicle-to-Vehicle Networks. <i>IEEE Transactions on Wireless Communications</i> , 2012 , 11, 505-509	9.6	17
383	Block Diagonalization in the MIMO Broadcast Channel with Delayed CSIT 2009,		17
382	CTH07-1: Effect of Feedback Delay on Multi-Antenna Limited Feedback for Temporally-Correlated Channels. <i>IEEE Global Telecommunications Conference (GLOBECOM)</i> , 2006 ,		17
381	Distributed SpaceII ime Interference Alignment With Moderately Delayed CSIT. <i>IEEE Transactions on Wireless Communications</i> , 2015 , 14, 1048-1059	9.6	16
380	Multicell cooperative systems with multiple receive antennas. <i>IEEE Wireless Communications</i> , 2013 , 20, 50-58	13.4	16
379	Analysis of millimeter wave networked wearables in crowded environments 2015,		16
378	Interference statistics in a random mmWave ad hoc network 2015 ,		16
377	. IEEE Transactions on Vehicular Technology, 2009 , 58, 2803-2814	6.8	16
376	An Experimental Evaluation of Rate Adaptation for Multi-Antenna Systems 2009,		16
375	Diversity performance of precoded orthogonal space-time block codes using limited feedback. <i>IEEE Communications Letters</i> , 2004 , 8, 305-307	3.8	16
374	Space-time Chase decoding. <i>IEEE Transactions on Wireless Communications</i> , 2005 , 4, 2035-2039	9.6	16
373	Optimal Frequency-Flat Precoding for Frequency-Selective Millimeter Wave Channels. <i>IEEE Transactions on Wireless Communications</i> , 2019 , 18, 5098-5112	9.6	15
372	Going Toward 6G [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2019 , 36, 3-4	9.4	15

(2006-2015)

371	Index Coding With Coded Side-Information. IEEE Communications Letters, 2015, 19, 319-322	3.8	15
370	Modeling Infrastructure Sharing in mmWave Networks With Shared Spectrum Licenses. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2018 , 4, 328-343	6.6	15
369	Spatial Covariance Estimation for Millimeter Wave Hybrid Systems Using Out-of-Band Information. <i>IEEE Transactions on Wireless Communications</i> , 2019 , 18, 5471-5485	9.6	15
368	User Arrival in MIMO Interference Alignment Networks. <i>IEEE Transactions on Wireless Communications</i> , 2012 , 11, 842-851	9.6	15
367	Interference alignment with limited feedback for two-cell interfering MIMO-MAC 2012,		15
366	Limited Feedback for Temporally Correlated MIMO Channels With Other Cell Interference. <i>IEEE Transactions on Signal Processing</i> , 2010 , 58, 5219-5232	4.8	15
365	A Supervised Learning Approach to Adaptation in Practical MIMO-OFDM Wireless Systems 2008,		15
364	Coordinated Beamforming for Multiuser MIMO Systems with Limited Feedforward 2006,		15
363	2006,		15
362	Millimeter Wave V2X Communications: Use Cases and Design Considerations of Beam Management 2018 ,		15
361	MmWave ad hoc network coverage and capacity 2015 ,		14
361 360	MmWave ad hoc network coverage and capacity 2015 , Limited Feedback in Single and Multi-User MIMO Systems With Finite-Bit ADCs. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 3284-3297	9.6	14
	Limited Feedback in Single and Multi-User MIMO Systems With Finite-Bit ADCs. <i>IEEE Transactions on</i>	9.6	
360	Limited Feedback in Single and Multi-User MIMO Systems With Finite-Bit ADCs. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 3284-3297 Sparsity-aware adaptive beamforming design for IEEE 802.11ad-based joint communication-radar	9.6	14
360 359	Limited Feedback in Single and Multi-User MIMO Systems With Finite-Bit ADCs. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 3284-3297 Sparsity-aware adaptive beamforming design for IEEE 802.11ad-based joint communication-radar 2018 ,	9.6	14
360 359 358	Limited Feedback in Single and Multi-User MIMO Systems With Finite-Bit ADCs. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 3284-3297 Sparsity-aware adaptive beamforming design for IEEE 802.11ad-based joint communication-radar 2018 , Achievable uplink rates for massive MIMO with coarse quantization 2017 , A simple SINR characterization for linear interference alignment over uncertain MIMO channels	9.6	14 14
360 359 358 357	Limited Feedback in Single and Multi-User MIMO Systems With Finite-Bit ADCs. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 3284-3297 Sparsity-aware adaptive beamforming design for IEEE 802.11ad-based joint communication-radar 2018 , Achievable uplink rates for massive MIMO with coarse quantization 2017 , A simple SINR characterization for linear interference alignment over uncertain MIMO channels 2010 ,	9.6	14 14 14

353	Hybrid-Arq in Multihop Networks with Opportunistic Relay Selection 2007,		14
352	Multiplexing/Beamforming Switching for Coded MIMO in Spatially Correlated Channels Based on Closed-Form BER Approximations. <i>IEEE Transactions on Vehicular Technology</i> , 2007 , 56, 2555-2567	6.8	14
351	FALP: Fast Beam Alignment in mmWave Systems With Low-Resolution Phase Shifters. <i>IEEE Transactions on Communications</i> , 2019 , 67, 8739-8753	6.9	14
350	. IEEE Transactions on Aerospace and Electronic Systems, 2017 , 53, 1597-1613	3.7	13
349	Interference Management Schemes for the Shared Relay Concept. <i>Eurasip Journal on Advances in Signal Processing</i> , 2011 , 2011,	1.9	13
348	Multimode Antenna Selection for MIMO Amplify-and-Forward Relay Systems. <i>IEEE Transactions on Signal Processing</i> , 2010 , 58, 5845-5859	4.8	13
347	To Code in Space and Time or Not in Multihop Relay Channels. <i>IEEE Transactions on Signal Processing</i> , 2009 , 57, 2736-2747	4.8	13
346	A SpaceII ime Receiver With Joint Synchronization and Interference Cancellation in Asynchronous MIMO-OFDM Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2008 , 57, 2991-3005	6.8	13
345	Exploiting limited feedback in tomorrow's wireless communication networks. <i>IEEE Journal on Selected Areas in Communications</i> , 2008 , 26, 1337-1340	14.2	13
344	SSIM-optimal linear image restoration. <i>Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing</i> , 2008 ,	1.6	13
343	Reduced Rank Signaling in Spatially Correlated MIMO Channels 2007,		13
342	Algorithms for the construction of incoherent frames under various design constraints. <i>Signal Processing</i> , 2018 , 152, 363-372	4.4	13
341	Connectivity and Blockage Effects in Millimeter-Wave Air-To-Everything Networks. <i>IEEE Wireless Communications Letters</i> , 2019 , 8, 388-391	5.9	12
340	Framework for an Innovative Perceptive Mobile Network Using Joint Communication and Sensing 2017 ,		12
339	Location based performance model for indoor mmWave wearable communication 2016,		12
338	Robust Analog Precoding Designs for Millimeter Wave MIMO Transceivers With Frequency and Time Division Duplexing. <i>IEEE Transactions on Communications</i> , 2016 , 64, 4622-4634	6.9	12
337	A compressive channel estimation technique robust to synchronization impairments 2017,		12
336	Advanced Limited Feedback Designs for FD-MIMO Using Uniform Planar Arrays 2015 ,		12

335	An Energy-Based Comparison of Long-Hop and Short-Hop Routing in MIMO Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2010 , 59, 394-405	6.8	12
334	Rate bounds for MIMO relay channels. <i>Journal of Communications and Networks</i> , 2008 , 10, 194-203	4.1	12
333	Quantization on the Grassmann manifold: applications to precoded MIMO wireless systems		12
332	DeepWiPHY: Deep Learning-Based Receiver Design and Dataset for IEEE 802.11ax Systems. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 20, 1596-1611	9.6	12
331	Hybrid Precoders and Combiners for mmWave MIMO Systems with Per-Antenna Power Constraints 2016 ,		12
330	Vehicular ad-hoc network simulations of overtaking maneuvers on two-lane rural highways. <i>Transportation Research Part C: Emerging Technologies</i> , 2016 , 72, 60-76	8.4	12
329	Line-of-Sight Probability for mmWave-Based UAV Communications in 3D Urban Grid Deployments. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	12
328	Wireless Power Transfer in Millimeter Wave Tactical Networks. <i>IEEE Signal Processing Letters</i> , 2017 , 24, 1284-1287	3.2	11
327	Performance trade-off in an adaptive IEEE 802.11AD waveform design for a joint automotive radar and communication system 2017 ,		11
326	Location-Specific Coverage in Heterogeneous Networks. <i>IEEE Signal Processing Letters</i> , 2013 , 20, 873-	876.2	11
325	AoD-adaptive subspace codebook for channel feedback in FDD massive MIMO systems 2017,		11
324	Analysis of interference mitigation in mmWave communications 2017,		11
323	A Stochastic Geometry Analysis of Large-Scale Cooperative Wireless Networks Powered by Energy Harvesting. <i>IEEE Transactions on Communications</i> , 2017 , 65, 3343-3358	6.9	11
322	. IEEE Transactions on Vehicular Technology, 2013 , 62, 1201-1215	6.8	11
321	On imperfect CSI for the downlink of a two-tier network 2011 ,		11
321	On imperfect CSI for the downlink of a two-tier network 2011 , Spatial interference mitigation for multiple input multiple output ad hoc networks: MISO gains 2011 ,		11
	Spatial interference mitigation for multiple input multiple output ad hoc networks: MISO gains		

317	Multiuser Antenna Partitioning for Cellular MIMOIIDMA Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2007 , 56, 2448-2456	6.8	11
316	Transmit diversity using decision-directed antenna hopping 1999,		11
315	Analysis of Urban Millimeter Wave Microcellular Networks 2016 ,		11
314	Swift-Link: A Compressive Beam Alignment Algorithm for Practical mmWave Radios. <i>IEEE Transactions on Signal Processing</i> , 2019 , 67, 1104-1119	4.8	11
313	Detection and Channel Equalization with Deep Learning for Low Resolution MIMO Systems 2018,		11
312	An attack on antenna subset modulation for millimeter wave communication 2015,		10
311	Impact of Correlation between Link Blockages on Macro-Diversity Gains in mmWave Networks 2018 ,		10
310	Limited feedback in multiple-antenna systems with one-bit quantization 2015,		10
309	Analysis of small cell partitioning in urban two-tier heterogeneous cellular networks 2014,		10
308	Multi-layer precoding for full-dimensional massive MIMO systems 2014,		10
307	Asymptotic coverage and rate in massive MIMO networks 2014 ,		10
306	Multiuser MIMO in distributed antenna systems with limited feedback 2012 ,		10
305	A dynamic system model of time-varying subjective quality of video streams over HTTP 2013,		10
304	Coordinated single-cell vs multi-cell transmission with limited-capacity backhaul 2010,		10
303	Single-user MIMO vs. Multiuser MIMO in the broadcast channel with CSIT constraints 2008,		10
302	Modelling realistic electromagnetic effects on MIMO system capacity. <i>Electronics Letters</i> , 2002 , 38, 162	241.1	10
301	Millimeter Wave Vehicular Communications: A Survey 2016 ,		10
300	MmWave Vehicular Beam Training with Situational Awareness by Machine Learning 2018,		10

299	Delay and Doppler processing for multi-target detection with IEEE 802.11 OFDM signaling 2017,		9
298	. IEEE Transactions on Communications, 2019 , 67, 1238-1253	6.9	9
297	Millimeter Wave: The Future of Commercial Wireless Systems 2016,		9
296	Gram Schmidt based greedy hybrid precoding for frequency selective millimeter wave MIMO systems 2016 ,		9
295	Joint CFO and channel estimation in millimeter wave systems with one-bit ADCs 2017,		9
294	Low resolution adaptive compressed sensing for mmWave MIMO receivers 2015,		9
293	On the spatial spectral efficiency of ITLinQ 2014 ,		9
292	Achievable throughput of multi-mode multiuser MIMO with imperfect CSI constraints 2009,		9
291	User admission in MIMO interference alignment networks 2011,		9
290	CSI feedback delay and degrees of freedom gain trade-off for the MISO interference channel 2012 ,		9
289	Coordinated Multi-cell MIMO Systems with Cellular Block Diagonalization. <i>Conference Record of the Asilomar Conference on Signals, Systems and Computers</i> , 2007 ,	0.3	9
288	Frame theoretic quantization for limited feedback MIMO beamforming systems		9
287	Physical Layer Security in Large-Scale Millimeter Wave Ad Hoc Networks 2016 ,		9
286	Joint Channel-Estimation/Decoding With Frequency-Selective Channels and Few-Bit ADCs. <i>IEEE Transactions on Signal Processing</i> , 2019 , 67, 899-914	4.8	8
285	Deep Learning Propagation Models over Irregular Terrain 2019,		8
284	Tensor-based Estimation of mmWave MIMO Channels with Carrier Frequency Offset 2019,		8
283	SpaceTime Physical-Layer Network Coding. <i>IEEE Journal on Selected Areas in Communications</i> , 2015 , 33, 323-336	14.2	8
282	Low Complexity Antenna Selection for Low Target Rate Users in Dense Cloud Radio Access Networks. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 6022-6032	9.6	8

281	A UAV-Based Traffic Monitoring System - Invited Paper 2018,		8
280	Securing mmWave Vehicular Communication Links with Multiple Transmit Antennas 2018,		8
279	Predictive Vector Quantization for Multicell Cooperation with Delayed Limited Feedback. <i>IEEE Transactions on Wireless Communications</i> , 2013 , 12, 2588-2597	9.6	8
278	MIMO Interference Alignment in Random Access Networks. <i>IEEE Transactions on Communications</i> , 2013 , 61, 5042-5055	6.9	8
277	Frequency Selective Hybrid Precoding in Millimeter Wave OFDMA Systems 2015,		8
276	Optimizing the Target Error Rate for Link Adaptation 2015 ,		8
275	Multi-cell coordination: A stochastic geometry approach 2012,		8
274	Extending the reach of GPS-assisted femtocell synchronization and localization through Tightly-Coupled Opportunistic Navigation 2011 ,		8
273	Grassmannian predictive coding for delayed limited feedback MIMO systems 2009,		8
272	Maximizing reliability in multi-hop wireless networks 2008,		8
271	Orthogonal Beamforming for SDMA Downlink with Limited Feedback 2007,		8
270	Optimizing MIMO Antenna Placement and Array Configurations for Multimedia Delivery in Aircraft. <i>IEEE Vehicular Technology Conference</i> , 2007 ,	0.1	8
269	Optimizing Coverage and Capacity in Cellular Networks using Machine Learning 2021,		8
268	Adaptive and Fast Combined Waveform-Beamforming Design for MMWave Automotive Joint Communication-Radar. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2021 , 15, 996-1012	7.5	8
267	On the Security of Millimeter Wave Vehicular Communication Systems Using Random Antenna Subsets 2016 ,		8
266	Frequency selective multiuser hybrid precoding for mmWave systems with imperfect channel knowledge 2016 ,		8
265	Fast Orthonormal Sparsifying Transforms Based on Householder Reflectors. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 6589-6599	4.8	8
264	Analysis of Urban Two-Tier Heterogeneous Mobile Networks With Small Cell Partitioning. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 7044-7057	9.6	8

(2020-2016)

263	Auxiliary beam pair design in mmWave cellular systems with hybrid precoding and limited feedback 2016 ,		8
262	Channel Estimation for Orthogonal Time Frequency Space (OTFS) Massive MIMO 2019,		7
261	Spectral efficiency of massive MIMO systems with D2D underlay 2015 ,		7
260	Ergodic Rate of Millimeter Wave Ad Hoc Networks. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 914-926	9.6	7
259	Position-Aided Compressive Channel Estimation and Tracking for Millimeter Wave Multi-User MIMO Air-to-Air Communications 2018 ,		7
258	A New MIMO HF Data Link: Designing for High Data Rates and Backwards Compatibility 2013,		7
257	Joint Communications and Sensing Using Two Steerable Analog Antenna Arrays 2017,		7
256	Energy Coverage in Millimeter Wave Energy Harvesting Networks 2015 ,		7
255	Multiuser MIMO in distributed antenna systems 2010 ,		7
254	MIMO interference alignment in random access networks 2011 ,		7
253	Frequency-Domain Channel Estimation and Equalization for Continuous-Phase Modulations With Superimposed Pilot Sequences. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 4903-4908	6.8	7
253	· · · · · · · · · · · · · · · · · · ·	6.8	7
	Superimposed Pilot Sequences. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 4903-4908	3.2	·
252	Superimposed Pilot Sequences. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 4903-4908 Implementation of a real-time wireless interference alignment network 2012 , Quantized Antenna Combining for Multiuser MIMO-OFDM With Limited Feedback. <i>IEEE Signal</i>		7
252 251	Superimposed Pilot Sequences. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 4903-4908 Implementation of a real-time wireless interference alignment network 2012 , Quantized Antenna Combining for Multiuser MIMO-OFDM With Limited Feedback. <i>IEEE Signal Processing Letters</i> , 2009 , 16, 1027-1030		7
252 251 250	Superimposed Pilot Sequences. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 4903-4908 Implementation of a real-time wireless interference alignment network 2012 , Quantized Antenna Combining for Multiuser MIMO-OFDM With Limited Feedback. <i>IEEE Signal Processing Letters</i> , 2009 , 16, 1027-1030 Spatial Interference Cancellation for Mobile Ad Hoc Networks: Perfect CSI 2008 , Throughput/Delay Measurements of Limited Feedback Beamforming in Indoor Wireless Networks		7 7
252 251 250 249	Superimposed Pilot Sequences. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 4903-4908 Implementation of a real-time wireless interference alignment network 2012 , Quantized Antenna Combining for Multiuser MIMO-OFDM With Limited Feedback. <i>IEEE Signal Processing Letters</i> , 2009 , 16, 1027-1030 Spatial Interference Cancellation for Mobile Ad Hoc Networks: Perfect CSI 2008 , Throughput/Delay Measurements of Limited Feedback Beamforming in Indoor Wireless Networks 2008 ,		7 7 7

245	Optimal User Loading in Massive MIMO Systems With Regularized Zero Forcing Precoding. <i>IEEE Wireless Communications Letters</i> , 2016 , 1-1	5.9	7
244	Analysis of Intelligent Vehicular Relaying in Urban 5G+ Millimeter-Wave Cellular Deployments 2019 ,		7
243	Enclosed mmWave Wearable Networks: Feasibility and Performance. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 2300-2313	9.6	6
242	Directional Frame Timing Synchronization in Wideband Millimeter-Wave Systems With Low-Resolution ADCs. <i>IEEE Transactions on Wireless Communications</i> , 2019 , 18, 5350-5366	9.6	6
241	Guest Editorial Ultra-Reliable Low-Latency Communications in Wireless Networks. <i>IEEE Journal on Selected Areas in Communications</i> , 2019 , 37, 701-704	14.2	6
240	IEEE Signal Processing Magazine and University Rankings [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2019 , 36, 3-4	9.4	6
239	Distributed Real-Time Implementation of Interference Alignment with Analog Feedback. <i>IEEE Transactions on Vehicular Technology</i> , 2015 , 64, 3513-3525	6.8	6
238	Dynamic subarray architecture for wideband hybrid precoding in millimeter wave massive MIMO systems 2016 ,		6
237	Cascaded orthogonal spacelime block codes for wireless multi-hop relay networks. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2013 , 2013,	3.2	6
236	Impact of 3D base station antenna in random heterogeneous cellular networks 2014 ,		6
235	Artificial-noise-aided secure multi-antenna transmission in slow fading channels with limited feedback 2014 ,		6
234	Noniterative Coordinated Beamforming for Multiuser MIMO Systems With Limited Feedforward. <i>IEEE Signal Processing Letters</i> , 2011 , 18, 701-704	3.2	6
233	Single-User and Multicast OFDM Power Loading With Nonregenerative Relaying. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 4890-4902	6.8	6
232	Jointly optimized two-cell MIMO systems 2011 ,		6
231	Non-iterative multiuser MIMO coordinated beamforming with limited feedforward. <i>Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing</i> , 2008 ,	1.6	6
230	A Throughput-Based Adaptive MIMO-BICM Approach for Spatially-Correlated Channels 2006,		6
229	WLC06-4: A Lattice-Based MIMO Broadcast Precoder with Block Diagonalization for Multi-Stream Transmission. <i>IEEE Global Telecommunications Conference (GLOBECOM)</i> , 2006 ,		6
228	Physical concerns for cross-layer prototyping and wireless network experimentation 2007 ,		6

227	Quantized multi-mode precoding for spatial multiplexing MIMO-OFDM system		6
226	Communications and Sensing: An Opportunity for Automotive Systems [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2020 , 37, 3-13	9.4	6
225	On Wirelessly Powered Communications with Short Packets 2016 ,		6
224	MIMO Channel Estimation with Non-Ideal ADCS: Deep Learning Versus GAMP 2019,		6
223	JCR70: A Low-Complexity Millimeter-Wave Proof-of-Concept Platform for a Fully-Digital SIMO Joint Communication-Radar. <i>IEEE Open Journal of Vehicular Technology</i> , 2021 , 2, 218-234	5.3	6
222	Low Resolution Sampling for Joint Millimeter-Wave MIMO Communication-Radar 2018,		6
221	Side-information-aided Noncoherent Beam Alignment Design for Millimeter Wave Systems 2019,		5
220	. IEEE Transactions on Multimedia, 2015 , 17, 1802-1817	6.6	5
219	Deep Learning-Based Beam Alignment in Mmwave Vehicular Networks 2020 ,		5
218	A compressive sensing-maximum likelihood approach for off-grid wideband channel estimation at mmWave 2017 ,		5
217	Accurately Accounting for Random Blockage in Device-to-Device mmWave Networks 2017,		5
216	Joint channel-estimation/decoding with frequency-selective channels and few-bit ADCs 2017,		5
215	Analytical Characterization of ITLinQ: Channel Allocation for Device-to-Device Communication Networks. <i>IEEE Transactions on Wireless Communications</i> , 2016 , 15, 3603-3615	9.6	5
214	An Indoor Correlated Shadowing Model 2015 ,		5
213	Sum-rate of MIMO two-way relaying with imperfect CSI 2010 ,		5
212	Cognitive cooperation for the downlink of frequency reuse small cells 2010 ,		5
211	A Machine Learning Approach to Link Adaptation for SC-FDE System 2011 ,		5
210	Optimizing training and feedback for MIMO interference alignment 2011 ,		5

209	Rate Bounds on SSIM Index of Quantized Image DCT Coefficients 2008,		5
208	Multiuser Limited Feedback for Wireless Multi-Antenna Communication 2007,		5
207	A Diversity Guarantee and SNR Performance for Unitary Limited Feedback MIMO Systems. <i>Eurasip Journal on Advances in Signal Processing</i> , 2007 , 2008,	1.9	5
206	Performance of the MIMO downlink channel with multi-mode adaptation and scheduling		5
205	Frame based multiple description image coding in the wavelet domain 2005,		5
204	Spatial Channel Covariance Estimation for Hybrid Architectures Based on Tensor Decompositions. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 1084-1097	9.6	5
203	Double-Sequence Frequency Synchronization for Wideband Millimeter-Wave Systems With Few-Bit ADCs. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 1357-1372	9.6	5
202	Hover or Perch: Comparing Capacity of Airborne and Landed Millimeter-Wave UAV Cells. <i>IEEE Wireless Communications Letters</i> , 2020 , 9, 2059-2063	5.9	5
201	Performance Analysis of Beam Sweeping in Millimeter Wave Assuming Noise and Imperfect Antenna Patterns 2016 ,		5
200	Compressive Sensing for Blockage Detection in Vehicular Millimeter Wave Antenna Arrays 2016 ,		5
199	Capacity and scaling laws of dense mmWave and interference alignment ad hoc networks 2016,		5
198	Spatial Zadoff-Chu Modulation for Rapid Beam Alignment in mmWave Phased Arrays 2018 ,		5
197	Analysis of Blockage Sensing by Radars in Random Cellular Networks. <i>IEEE Signal Processing Letters</i> , 2018 , 25, 1620-1624	3.2	5
196	InFocus: A spatial coding technique to mitigate misfocus in near-field LoS beamforming. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	5
195	2016 , 54, 52-53		4
194	Analysis of beam sweep channel estimation in MmWave massive MIMO networks 2016,		4
193	Multiple-Antenna Transmission With Limited Feedback in Device-to-Device Networks. <i>IEEE Wireless Communications Letters</i> , 2016 , 5, 200-203	5.9	4
192	A Noncoherent Space-Time Code from Quantum Error Correction 2019 ,		4

191	Capacity Based Optimization of Compact Wideband Antennas 2019,		4
190	Making a Good Feature Article Submission [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2019 , 36, 3-4	9.4	4
189	A Phase-Reconstruction Technique for Low-Power Centimeter-Accurate Mobile Positioning. <i>IEEE Transactions on Signal Processing</i> , 2014 , 62, 2595-2610	4.8	4
188	Joint transmission mode and tilt adaptation in coordinated small-cell networks 2014,		4
187	Antenna Subset Modulation for secure millimeter-wave wireless communication 2013,		4
186	Energy Efficiency of Wireless Information and Power Transfer with Massive MIMO 2017,		4
185	Near maximum-likelihood detector with one-bit ADCs for multiuser massive MIMO systems 2015,		4
184	HF MIMO NVIS Measurements with Co-located Dipoles for Future Tactical Communications 2013,		4
183	Cognitive Cooperation for the Downlink of Frequency Reuse Small Cells. <i>Eurasip Journal on Advances in Signal Processing</i> , 2011 , 2011,	1.9	4
182	Two-way transmission capacity of wireless ad-hoc networks 2010 ,		4
181	Interference alignment with analog CSI feedback 2010 ,		4
180	Transmission Capacity of Two-Way Communication in Wireless Ad Hoc Networks 2009,		4
179	Joint Source-Channel Adaptation for Perceptually Optimized Scalable Video Transmission 2011,		4
178	2009,		4
177	Transmission capacity of wireless ad-hoc networks with multiple antennas using multi-mode precoding and interference cancelation 2009 ,		4
176	Opportunistic Scheduling in Multiuser OFDM Systems with Clustered Feedback. <i>Wireless Personal Communications</i> , 2010 , 52, 209	1.9	4
175	Optimization methodology for designing 2-CPAs exploiting pattern diversity in clustered MIMO channels. <i>IEEE Transactions on Communications</i> , 2008 , 56, 1748-1759	6.9	4
174	Perceptual soft thresholding using the structural similarity index 2008,		4

173	Multiuser MIMO Downlink with Limited Feedback Using Transmit-Beam Matching 2008,		4
172	Relay Subset Selection in Wireless Networks Using Partial Decode-and-Forward Transmission. <i>IEEE Vehicular Technology Conference</i> , 2008 ,	0.1	4
171	Joint Interference Cancellation and Channel Shortening in Multiuser-MIMO Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2007 , 56, 652-660	6.8	4
170	Jointly Optimized Multiuser Beamforming for the MIMO Broadcast Channel with Limited Feedback 2007 ,		4
169	Blind equalization in OFDM-based multi-antenna systems		4
168	Collision-Free UAV Navigation with a Monocular Camera Using Deep Reinforcement Learning 2020,		4
167	System and Design for Selective OFDM SWIPT Transmission. <i>IEEE Transactions on Green Communications and Networking</i> , 2021 , 5, 335-347	4	4
166	. IEEE Transactions on Wireless Communications, 2021 , 20, 3122-3136	9.6	4
165	Capacity and Coverage in Clustered LOS mmWave Ad Hoc Networks 2016,		4
164	Auxiliary Beam Pair Enabled AoD and AoA Estimation in mmWave FD-MIMO Systems 2016,		4
163	Capacity Based Analysis of a Wideband SIMO System in the Presence of Mutual Coupling 2019,		4
162	Towards Robustness: Machine Learning for MmWave V2X with Situational Awareness 2018,		4
161	Virtual Pulse Design for IEEE 802.11AD-Based Joint Communication-Radar 2018 ,		4
160	Augmented covariance estimation with a cyclic approach in DOA 2015,		3
159	Low-Rank MMWAVE MIMO Channel Estimation in One-Bit Receivers 2020,		3
158	LTE-advanced pro: part 2 [Guest Editorial] 2016 , 54, 12-13		3
157	Array thinning for antenna selection in millimeter wave MIMO systems 2016,		3
156	Introduction to the Special Issue on Signal Processing for Millimeter Wave Wireless Communications. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2016 , 10, 433-435	7.5	3

155	A Low Complexity ML Detection for Uplink Massive MIMO Systems with One-Bit ADCs 2018,		3
154	Organizing a Special Issue of IEEE SPM [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2019 , 36, 3-4	9.4	3
153	Signal Processing for the 5G Revolution [From the Guest Editors]. <i>IEEE Signal Processing Magazine</i> , 2014 , 31, 12-13	9.4	3
152	Interference alignment Recent results and future directions 2013,		3
151	A distributed algorithm using interference pricing for relay interference channels. <i>Eurasip Journal on Advances in Signal Processing</i> , 2013 , 2013,	1.9	3
150	Tracking abruptly changing channels in mmWave systems using overlaid data and training 2017,		3
149	A frequency-domain approach to wideband channel estimation in millimeter wave systems 2017,		3
148	Directional timing synchronization in wideband millimeter wave cellular systems with low-resolution ADCs 2017 ,		3
147	Uplink Massive MIMO SIR Analysis: How Do Antennas Scale with Users? 2015,		3
146	Performance evaluation of ITLinQ and FlashLinQ for overlaid device-to-device communication ${f 2015}$,		3
145	Video quality-maximizing resource allocation and scheduling with statistical delay guarantees 2013,		3
144	Interference alignment for the multiple-antenna amplify-and-forward relay interference channel 2011 ,		3
143	Distributed link adaptation for multicast traffic in MIMO-OFDM systems. <i>Physical Communication</i> , 2011 , 4, 286-295	2.2	3
142	Link adaptation in MIMO-OFDM with non-uniform constellation selection over spatial streams through supervised learning 2010 ,		3
141	Relay-Assisted User Scheduling in Wireless Networks With Hybrid ARQ. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 5284-5288	6.8	3
140	Robust Beamforming and Power Control for Two-Tier Femtocell Networks 2011,		3
139	Impact of Delayed Limited Feedback on the Sum-Rate of Intercell Interference Nulling 2011,		3
138	Interference leakage minimization for convolutive MIMO interference channels 2012,		3

137	Linear network coordinated beamforming for cell-boundary users 2009,		3
136	End-to-End Joint Antenna Selection Strategy and Distributed Compress and Forward Strategy for Relay Channels. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2009 , 2009,	3.2	3
135	Impact of Mutual Coupling on Adaptive Switching Between MIMO Transmission Strategies and Antenna Configurations. <i>Wireless Personal Communications</i> , 2010 , 52, 69	1.9	3
134	Spatial interference cancelation for mobile ad hoc networks: Imperfect CSI 2008,		3
133	Progressive refinement for high resolution limited feedback multiuser MIMO beamforming 2008,		3
132	Switching between antenna selection and spatial multiplexing in the nonregenerative MIMO relay channel 2008 ,		3
131	On the SNR and Diversity of Quantized Precoded MIMO Systems 2006,		3
130	Uplink SDMA with Limited Feedback: Throughput Scaling. <i>Eurasip Journal on Advances in Signal Processing</i> , 2007 , 2008,	1.9	3
129	Space-Time Water-Filling for Composite MIMO Fading Channels. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2006 , 2006, 1	3.2	3
128	Pattern diversity with multi-mode circular patch antennas in clustered MIMO channels		3
127	A Low-Resolution ADC Proof-of-Concept Development for a Fully-Digital Millimeter-wave Joint Communication-Radar 2020 ,		3
126	2016 , 54, 74-75		3
125	A Combined Waveform-Beamforming Design for Millimeter-Wave Joint Communication-Radar 2019 ,		3
124	Beamforming in Millimeter Wave Systems: Prototyping and Measurement Results 2018,		3
123	Low Resolution Millimeter Wave Radar: Bounds and Performance 2018,		3
122	SPATIAL CHANNEL COVARIANCE ESTIMATION FOR THE HYBRID ARCHITECTURE AT A BASE STATION: A TENSOR-DECOMPOSITION-BASED APPROACH 2018 ,		3
121	. IEEE Transactions on Wireless Communications, 2018, 17, 3861-3876	9.6	3
120	Challenges and Opportunities of Future Rural Wireless Communications. <i>IEEE Communications Magazine</i> , 2021 , 59, 16-22	9.1	3

119	Hybrid precoding using long-term channel statistics for massive MIMO systems 2017,		2
118	Message Passing-Based Link Configuration in Short Range Millimeter Wave Systems. <i>IEEE Transactions on Communications</i> , 2020 , 68, 3465-3479	6.9	2
117	A Geometry-aided Message Passing Method for AoA-Based Short Range MIMO Channel Estimation 2019 ,		2
116	Cross-polarization RF precoding to mitigate mobile misorientation and polarization leakage 2014 ,		2
115	Fast Link Configuration for mmWave Multiuser MIMO Downlink Using Spatial AoD Angular Supports 2017 ,		2
114	Exploiting Common Sparsity for Frequency-Domain Wideband Channel Estimation at mmWave 2017 ,		2
113	A Stochastic Geometry Approach to Analyzing Cellular Networks with Semi-Static Clustering 2015,		2
112	Base station cluster patterns for semi-static multi-cell cooperation in irregular network topologies 2015 ,		2
111	FDD massive MIMO with analog csi feedback 2015 ,		2
110	Performance analysis of pair-wise dynamic multi-user joint transmission 2015 ,		2
109	Prioritized multimode precoding for joint minimization of source-channel video distortions 2012,		2
108	Pre- and post-FFT interference leakage minimization for MIMO OFDM networks 2012,		2
107	Coverage and area spectral efficiency in downlink random cellular networks with channel estimation error 2013 ,		2
106	Degrees of freedom of completely-connected multi-way interference networks 2013,		2
105	Multimode Transmission in Network MIMO Downlink with Incomplete CSI. <i>Eurasip Journal on Advances in Signal Processing</i> , 2011 , 2011,	1.9	2
104	Predictive limited feedback for cooperative transmission 2010,		2
103	Interference alignment with per-antenna power constraints 2011,		2
102	Computing the Receive Spatial Correlation for a Multi-Cluster MIMO Channel Using Different Array Configurations 2008 ,		2

101	Low-Complexity User and Antenna Selection for Multiuser MIMO Systems with Block Diagonalization 2007 ,		2
100	WLC11-4: Power Control for Cellular MIMO Systems. <i>IEEE Global Telecommunications Conference</i> (GLOBECOM), 2006 ,		2
99	Downlink MIMO Block Diagonalization in the Presence of Other-Cell Interference 2007,		2
98	Quantization on the complex projective space		2
97	Towards mmWave V2X in 5G and Beyond to Support Automated Driving. <i>IEICE Transactions on Communications</i> , 2021 , E104.B, 587-603	0.5	2
96	The use of unit norm tight measurement matrices for one-bit compressed sensing 2016,		2
95	Can operators simply share millimeter wave spectrum licenses? 2016 ,		2
94	Restricted Secondary Licensing for mmWave Cellular: How Much Gain Can Be Obtained? 2016,		2
93	Vehicle-to-Vehicle Communication for Autonomous Vehicles: Safety and Maneuver Planning 2018,		2
92	Geometric Tracking of Vehicular mmWave Channels to Enable Machine Learning of Onboard Sensors 2018 ,		2
91	Introducing the New Editorial Team of IEEE Signaling Processing Magazine [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2018 , 35, 4-5	9.4	2
90	GlobalSIP and Beyond [From the Editor]. IEEE Signal Processing Magazine, 2018, 35, 3-15	9.4	2
89	Wireless Power Transfer in Millimeter Wave 2018 , 139-156		2
88	Experimental evaluation in wireless communications. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2017 , 2017,	3.2	1
87	FER Estimation in a Memoryless BSC With Variable Frame Length and Unreliable ACK/NAK Feedback. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 3661-3673	9.6	1
86	Vehicular Applications of Signal Processing [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2019 , 36, 3-6	9.4	1
85	Localized Random Sampling for Robust Compressive Beam Alignment 2019,		1
84	Taking the Next Step for IEEE Signal Processing Magazine [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2018 , 35, 4-171	9.4	1

(2009-2016)

83	Adaptive Feedback Partitions in Dynamic Zero-Forcing Beamforming Based on Stochastic Geometry 2016 ,		1
82	Impact of Measurement Noise on Millimeter Wave Beam Alignment Using Beam Subsets. <i>IEEE Wireless Communications Letters</i> , 2018 , 7, 784-787	5.9	1
81	Research Gems Found Digging with Industry [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2018 , 35, 4-18	9.4	1
80	Introduction to the Issue on Signal Processing in Heterogeneous Networks for Future Broadband Wireless Systems. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2012 , 6, 213-215	7.5	1
79	Base station cooperation with dynamic clustering in super-dense cloud-RAN 2013,		1
78	Identifying coverage holes: Where to densify? 2017 ,		1
77	Analyzing wireless power transfer in millimeter wave networks with human blockages 2017,		1
76	Retrospective interference alignment for two-cell uplink MIMO cellular networks with delayed CSIT 2015 ,		1
75	Adaptive video transmission with subjective quality constraints 2014,		1
74	FER prediction with variable codeword length 2014 ,		1
73	Link adaptation in MIMO-OFDM with practical impairments 2013,		1
72	Adaptive transmit antenna selection in MIMO amplify-and-forward relay channels 2010,		1
71	Limited feedback beamforming for temporally correlated MIMO channels with other cell interference 2010 ,		1
70	Grassmannian predictive frequency domain compression for limited feedback beamforming 2010,		1
69	MIMO Spatial Mode Adaptation at the Cell Edge Using Interferer Spatial Correlation 2009,		1
68	Sum-rate maximizing beamforming in multicell systems with limited feedback 2009,		1
67	Relay Beamforming Using Interference Pricing for the Two-Hop Interference Channel 2011,		1
66	Adaptive mode switching in correlated multiple antenna cellular networks. <i>Journal of Communications and Networks</i> , 2009 , 11, 279-286	4.1	1

65	Joint Detection for Multi-Antenna Channels311-364		1
64	Sizing up MIMO arrays. <i>IEEE Vehicular Technology Magazine</i> , 2008 , 3, 31-38	9.9	1
63	A low complexity linear multiuser MIMO beamforming system with limited feedback 2008,		1
62	Congruent Voronoi tessellations from equiangular lines. <i>Applied and Computational Harmonic Analysis</i> , 2007 , 23, 254-258	3.1	1
61	Impact of Mutual Coupling and Antenna Efficiencies on Adaptive Switching Between MIMO Transmission Strategies. <i>Vehicular Technology Conference-Fall (VTC-FALL), Proceedings, IEEE</i> , 2007 ,		1
60	A MIMO demonstration of Hydra 2007 ,		1
59	SDMA with a Sum Feedback Rate Constraint 2007 ,		1
58	Reduced complexity signal detection for OFDM systems with transmit diversity. <i>Journal of Communications and Networks</i> , 2007 , 9, 75-83	4.1	1
57	Feedback Techniques for MIMO Channels. <i>Electrical Engineering and Applied Signal Processing Series</i> , 2006 , 113-146		1
56	Corrections to "Equal gain transmission in multiple-input multiple-output wireless systems". <i>IEEE Transactions on Communications</i> , 2003 , 51, 1613-1613	6.9	1
55	Beamforming optimization of wideband MISO systems in the presence of mutual coupling 2020,		1
54	A MIMO Joint Communication-Radar Measurement Platform at the Millimeter-Wave Band : (Invited Paper) 2020 ,		1
53	Optimizing the mutual information of frequency-selective multi-port antenna arrays in the presence of mutual coupling. <i>IEEE Transactions on Communications</i> , 2021 , 1-1	6.9	1
52	Revisiting Research on Signal Processing for Communications in a Pandemic [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2020 , 37, 3-5	9.4	1
51	Linear CE and 1-bit Quantized Precoding With Optimized Dithering. <i>IEEE Open Journal of Signal Processing</i> , 2020 , 1, 310-325	1.2	1
50	Limited feedback in MISO systems with finite-bit ADCs 2016 ,		1
49	Compressive Channel Estimation in FDD Multi-Cell Massive MIMO Systems with Arbitrary Arrays 2016 ,		1
48	Selective OFDM Transmission for Simultaneous Wireless Information and Power Transfer 2019 ,		1

47	Short Range 3D MIMO mmWave Channel Reconstruction via Geometry-aided AoA Estimation 2019,		1
46	Power Scalable Angle of Arrival Estimation Using Pilot Design With Orthogonal Subsequences. <i>IEEE Open Journal of the Communications Society</i> , 2021 , 2, 1690-1709	6.7	1
45	Making Papers, Code, and Data Accessible [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2018 , 35, 3-4	9.4	1
44	The Information and Wave-Theoretic Limits of Analog Beamforming 2018,		1
43	Low-Overhead Receiver-Side Channel Tracking for Mmwave Mimo 2018,		1
42	Signal Conditioning and Prototyping for Selective OFDM Systems with Simultaneous Wireless Information and Power Transfer 2021 ,		1
41	Achievable Rate with Antenna Size Constraint: Shannon meets Chu and Bode. <i>IEEE Transactions on Communications</i> , 2021 , 1-1	6.9	1
40	Artificial Intelligence for Physical-Layer Design of MIMO Communications With One-Bit ADCs. <i>IEEE Communications Magazine</i> , 2022 , 1-7	9.1	1
39	Properties of real and complex ETFs and their application to the design of low coherence frames. <i>Linear Algebra and Its Applications</i> , 2016 , 508, 81-90	0.9	О
38	Information Outage Probability and Diversity Order of Alamouti Transmit Diversity in Time-Selective Fading Channels. <i>IEEE Transactions on Vehicular Technology</i> , 2008 , 57, 3890-3895	6.8	Ο
37	Massive MIMO Precoding and Spectral Shaping with Low Resolution Phase-only DACs and Active Constellation Extension. <i>IEEE Transactions on Wireless Communications</i> , 2022 , 1-1	9.6	O
36	Single Channel Equivalent Point Processes of Poisson Networks with Multiple Channel Laws. <i>IEEE Communications Letters</i> , 2021 , 1-1	3.8	O
35	High-Capacity Millimeter Wave UAV Communications 2020 , 203-229		О
34	A Quaternion-Based Approach to Construct Quaternary Periodic Complementary Pairs. <i>IEEE Communications Letters</i> , 2020 , 24, 2010-2014	3.8	Ο
33	. IEEE Transactions on Communications, 2021 , 69, 133-148	6.9	О
32	Feedback from the IEEE Signal Processing Magazine Board Meeting in 2019 [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2019 , 36, 3-4	9.4	
31	Submitting Columns and Forums to SPM [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2020 , 37, 3-4	9.4	
30	What Does an Editor-in-Chief of IEEE Signal Processing Magazine Do, Anyway? [From the Editor]. <i>IEEE Signal Processing Magazine</i> , 2020 , 37, 3-4	9.4	

29	Topological algebraic structure on Souslin and Aronszajn lines. <i>Topology and Its Applications</i> , 2012 , 159, 818-822	0.4
28	Multiple antenna techniques in small cell networks96-124	
27	Digital Communication Basics 2011 , 627-641	
26	Signal Processing for Networking and Communications [In the Spotlight]. <i>IEEE Signal Processing Magazine</i> , 2011 , 28, 151-152	9.4
25	Correction to BDMA With a Sum Feedback Rate Constraint II IEEE Transactions on Signal Processing, 2008 , 56, 3800-3801	4.8
24	Distributed Multicell Precoding for Network MIMO. Advances in Wireless Technologies and Telecommunication Book Series,78-101	0.2
23	Leveraging Waveform Structure to Develop a Power Scalable AoA Estimation. <i>IEEE Open Journal of the Communications Society</i> , 2021 , 2, 2739-2759	6.7
22	Quantum Codes in Classical Communication: A Space-Time Block Code From Quantum Error Correction. <i>IEEE Open Journal of the Communications Society</i> , 2021 , 2, 2383-2412	6.7
21	Overhead Reduction in Coordinated Beamforming for Multiuser MIMO-OFDM Systems with Limited Feedforward. <i>IEICE Transactions on Communications</i> , 2011 , E94-B, 3168-3171	0.5
20	Multicell Handoff in MIMO Cellular Systems. <i>Advances in Intelligent and Soft Computing</i> , 2012 , 893-898	
19	Reflections on Tutorials and Surveys [From the Editor]. IEEE Signal Processing Magazine, 2020, 37, 3-4	9.4
18	Signal Conditioning for Selective OFDM SWIPT Systems. <i>IEEE Open Journal of the Communications Society</i> , 2021 , 2, 1886-1900	6.7
17	A primer on information theory and MMSE estimation 2018 , 3-56	
16	A signal processing perspective 2018 , 57-130	
15	Channel modeling 2018 , 131-208	
14	Single-user SISO 2018 , 209-294	
13	SU-MIMO with optimum receivers 2018 , 297-385	
12	SU-MIMO with linear receivers 2018 , 386-412	

LIST OF PUBLICATIONS

11	Multiuser communication prelude 2018 , 415-435		
10	MU-MIMO with optimum transceivers 2018 , 436-496		
9	MU-MIMO with linear transceivers 2018 , 497-577		
8	Massive MIMO 2018 , 578-642		
7	Transforms 2018 , 649-652		
6	Random variables and processes 2018 , 661-673		
5	Gradient operator 2018 , 674-675		
4	Landau symbols 2018 , 680-680		
3	Convex optimization 2018 , 681-684		
2	Improved CRB for Millimeter-Wave Radar With 1-Bit ADCs. <i>IEEE Open Journal of Signal Processing</i> , 2021 , 2, 318-335	1.2	
1	Editorial Issue on Information Theoretic Foundations of Future Communication Systems IIEEE Journal on Selected Areas in Information Theory, 2022 , 3, 2-4	2.5	