Kyung-In Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4628633/publications.pdf Version: 2024-02-01

KVUNC-IN IANC

#	Article	IF	CITATIONS
1	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	5.8	933
2	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	6.0	745
3	Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nature Biotechnology, 2015, 33, 1280-1286.	9.4	658
4	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science, 2019, 363, .	6.0	521
5	3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Communications, 2014, 5, 3329.	5.8	485
6	Wireless Optofluidic Systems for Programmable InÂVivo Pharmacology and Optogenetics. Cell, 2015, 162, 662-674.	13.5	417
7	Soft network composite materials with deterministic and bio-inspired designs. Nature Communications, 2015, 6, 6566.	5.8	392
8	Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Science Advances, 2016, 2, e1600418.	4.7	336
9	Self-assembled three dimensional network designs for soft electronics. Nature Communications, 2017, 8, 15894.	5.8	325
10	Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances, 2016, 2, e1601185.	4.7	310
11	Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nature Communications, 2014, 5, 4779.	5.8	309
12	Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry. Advanced Functional Materials, 2017, 27, 1604373.	7.8	248
13	Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nature Communications, 2014, 5, 4938.	5.8	227
14	Multifunctional Skinâ€Like Electronics for Quantitative, Clinical Monitoring of Cutaneous Wound Healing. Advanced Healthcare Materials, 2014, 3, 1597-1607.	3.9	226
15	A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures. Journal of the Mechanics and Physics of Solids, 2016, 90, 179-202.	2.3	220
16	Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities. Advanced Functional Materials, 2015, 25, 4761-4767.	7.8	148
17	Soft, thin skin-mounted power management systems and their use in wireless thermography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6131-6136.	3.3	139
18	Soft Core/Shell Packages for Stretchable Electronics. Advanced Functional Materials, 2015, 25, 3698-3704.	7.8	116

Kyung-In Jang

#	Article	IF	CITATIONS
19	Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8169-E8177.	3.3	111
20	Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nature Electronics, 2021, 4, 291-301.	13.1	106
21	Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nature Biomedical Engineering, 2021, 5, 749-758.	11.6	100
22	Design of Strain‣imiting Substrate Materials for Stretchable and Flexible Electronics. Advanced Functional Materials, 2016, 26, 5345-5351.	7.8	92
23	Miniaturized, Batteryâ€Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics. Small, 2018, 14, 1702479.	5.2	91
24	Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nature Biomedical Engineering, 2019, 3, 655-669.	11.6	88
25	Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Materials, 2015, 7, e227-e227.	3.8	80
26	Epidermal radio frequency electronics for wireless power transfer. Microsystems and Nanoengineering, 2016, 2, 16052.	3.4	72
27	Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs. Advanced Functional Materials, 2017, 27, 1605476.	7.8	64
28	The equivalent medium of cellular substrate under large stretching, with applications to stretchable electronics. Journal of the Mechanics and Physics of Solids, 2018, 120, 199-207.	2.3	62
29	Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nature Protocols, 2017, 12, 219-237.	5.5	61
30	Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€Term Electrophysiological Recording. Advanced Functional Materials, 2016, 26, 7281-7290.	7.8	53
31	Outdoorâ€Useable, Wireless/Batteryâ€Free Patchâ€Type Tissue Oximeter with Radiative Cooling. Advanced Science, 2021, 8, 2004885.	5.6	50
32	Ultrastretchable Helical Conductive Fibers Using Percolated Ag Nanoparticle Networks Encapsulated by Elastic Polymers with High Durability in Omnidirectional Deformations for Wearable Electronics. Advanced Functional Materials, 2020, 30, 1910026.	7.8	47
33	Epidermal electronics for electromyography: An application to swallowing therapy. Medical Engineering and Physics, 2016, 38, 807-812.	0.8	43
34	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. Advanced Functional Materials, 2015, 25, 1338-1343.	7.8	41
35	Ultra-thin films with highly absorbent porous media fine-tunable for coloration and enhanced color purity. Nanoscale, 2017, 9, 2986-2991.	2.8	41
36	Mechanically Guided Postâ€Assembly of 3D Electronic Systems. Advanced Functional Materials, 2018, 28, 1803149.	7.8	41

Kyung-In Jang

#	Article	IF	CITATIONS
37	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. ACS Nano, 2018, 12, 4164-4171.	7.3	36
38	Dry Transient Electronic Systems by Use of Materials that Sublime. Advanced Functional Materials, 2017, 27, 1606008.	7.8	34
39	Selfâ€Bondable and Stretchable Conductive Composite Fibers with Spatially Controlled Percolated Ag Nanoparticle Networks: Novel Integration Strategy for Wearable Electronics. Advanced Functional Materials, 2020, 30, 2005447.	7.8	28
40	Wrinkling of a stiff thin film bonded to a pre-strained, compliant substrate with finite thickness. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160339.	1.0	25
41	Thin Metallic Heat Sink for Interfacial Thermal Management in Biointegrated Optoelectronic Devices. Advanced Materials Technologies, 2018, 3, 1800159.	3.0	25
42	Instant, multiscale dry transfer printing by atomic diffusion control at heterogeneous interfaces. Science Advances, 2021, 7, .	4.7	22
43	Rapidly Customizable, Scalable 3Dâ€Printed Wireless Optogenetic Probes for Versatile Applications in Neuroscience. Advanced Functional Materials, 2020, 30, 2004285.	7.8	18
44	Selfâ€Cooling Galliumâ€Based Transformative Electronics with a Radiative Cooler for Reliable Stiffness Tuning in Outdoor Use. Advanced Science, 2022, 9, .	5.6	17
45	Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H ₂ Sensors. ACS Applied Materials & Interfaces, 2020, 12, 45243-45253.	4.0	16
46	Electrochemical oxidation assisted micromachining of glassy carbon substrate. International Journal of Precision Engineering and Manufacturing, 2015, 16, 419-422.	1.1	12
47	Stretchable Electronics: Epidermal Electronics with Advanced Capabilities in Near-Field Communication (Small 8/2015). Small, 2015, 11, 905-905.	5.2	8
48	Closed-Loop Neuromodulation for Parkinson's Disease: Current State and Future Directions. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 209-223.	1.4	7
49	Epidermal Systems: Soft Core/Shell Packages for Stretchable Electronics (Adv. Funct. Mater. 24/2015). Advanced Functional Materials, 2015, 25, 3697-3697.	7.8	6
50	Oximetry: Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry (Adv. Funct. Mater.) Tj ETQ	q0.0 0 rgB 7.8	T /Overlock 1 4
51	Epidermal Electronics: Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4919-4919.	7.8	3
52	Electronic Stuctures: Mechanically Guided Postâ€Assembly of 3D Electronic Systems (Adv. Funct. Mater.) Tj ETQo	ე0.0 rgB 7.8	T /Overlock 1

53	Cerebral Oximetry: Ultrastretchable Helical Conductive Fibers Using Percolated Ag Nanoparticle Networks Encapsulated by Elastic Polymers with High Durability in Omnidirectional Deformations for Wearable Electronics (Adv. Funct. Mater. 29/2020). Advanced Functional Materials, 2020, 30, 2070198.	7.8	1
54	Electrodes: Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€Term Electrophysiological Recording (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7280-7280.	7.8	0

#	Article	IF	CITATIONS
55	Transient Electronics: Dry Transient Electronic Systems by Use of Materials that Sublime (Adv. Funct.) Tj ETQq1 1	0,7,84314	rgBT /Overi
56	Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition. Journal of Visualized Experiments, 2017, , .	0.2	0
57	Optogenetic Probes: Rapidly Customizable, Scalable 3Dâ€Printed Wireless Optogenetic Probes for Versatile Applications in Neuroscience (Adv. Funct. Mater. 46/2020). Advanced Functional Materials, 2020, 30, 2070305.	7.8	0