Marceline CÃ'té

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4628600/publications.pdf Version: 2024-02-01

		393982	315357
38	1,917	19	38
papers	citations	h-index	g-index
42	42	42	3523
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Strong humoral immune responses against SARS-CoV-2 Spike after BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Host and Microbe, 2022, 30, 97-109.e5.	5.1	83
2	Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Reports, 2022, 38, 110210.	2.9	96
3	Antigenicity of the Mu (B.1.621) and A.2.5 SARS-CoV-2 Spikes. Viruses, 2022, 14, 144.	1.5	12
4	SARS-CoV-2 Omicron Spike recognition by plasma from individuals receiving BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Reports, 2022, 38, 110429.	2.9	50
5	Identification of FDA-approved Bifonazole as SARS-CoV-2 blocking agent following a bioreporter drug screen. Molecular Therapy, 2022, , .	3.7	5
6	VE607 stabilizes SARS-CoV-2 Spike in the "RBD-up―conformation and inhibits viral entry. IScience, 2022, 25, 104528.	1.9	8
7	Ebola virus triggers receptor tyrosine kinase-dependent signaling to promote the delivery of viral particles to entry-conducive intracellular compartments. PLoS Pathogens, 2021, 17, e1009275.	2.1	11
8	Potential Differences in Cleavage of the S Protein and Type 1 Interferon Together Control Human Coronavirus Infection, Propagation, and Neuropathology within the Central Nervous System. Journal of Virology, 2021, 95, .	1.5	14
9	Identification of a High-Frequency Intrahost SARS-CoV-2 Spike Variant with Enhanced Cytopathic and Fusogenic Effects. MBio, 2021, 12, e0078821.	1.8	19
10	Proximity Interactome Map of the Vac14–Fig4 Complex Using BioID. Journal of Proteome Research, 2021, 20, 4959-4973.	1.8	4
11	Interferon-Induced HERC5 Inhibits Ebola Virus Particle Production and Is Antagonized by Ebola Glycoprotein. Cells, 2021, 10, 2399.	1.8	3
12	Contribution of single mutations to selected SARS-CoV-2 emerging variants spike antigenicity. Virology, 2021, 563, 134-145.	1.1	74
13	A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature. Cell Death and Disease, 2021, 12, 8.	2.7	25
14	Antiviral Potential of the Antimicrobial Drug Atovaquone against SARS-CoV-2 and Emerging Variants of Concern. ACS Infectious Diseases, 2021, 7, 3034-3051.	1.8	17
15	Cross-Sectional Evaluation of Humoral Responses against SARS-CoV-2 Spike. Cell Reports Medicine, 2020, 1, 100126.	3.3	200
16	Foam Cell Induction Activates AMPK But Uncouples Its Regulation of Autophagy and Lysosomal Homeostasis. International Journal of Molecular Sciences, 2020, 21, 9033.	1.8	7
17	Filoviruses Use the HOPS Complex and UVRAG To Traffic to Niemann-Pick C1 Compartments during Viral Entry. Journal of Virology, 2020, 94, .	1.5	5
18	From hitchhiker to hijacker: pathogen exploitation of endosomal phosphoinositides. Biochemistry and Cell Biology, 2019, 97, 1-9.	0.9	6

Marceline CôTé

#	Article	IF	CITATIONS
19	Characterization of Redox-Responsive LXR-Activating Nanoparticle Formulations in Primary Mouse Macrophages. Molecules, 2019, 24, 3751.	1.7	7
20	Co-targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via Combination Nanotherapy. Molecular Cancer Therapeutics, 2019, 18, 1755-1764.	1.9	17
21	Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2019, 13, 6491-6505.	7.3	98
22	A Diacylglycerol Kinase Inhibitor, R-59-022, Blocks Filovirus Internalization in Host Cells. Viruses, 2019, 11, 206.	1.5	8
23	Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry. Virology, 2018, 513, 17-28.	1.1	41
24	Inhibition of Ebola Virus Infection: Identification of Niemann-Pick C1 as the Target by Optimization of a Chemical Probe. ACS Medicinal Chemistry Letters, 2013, 4, 239-243.	1.3	28
25	Filoviruses Require Endosomal Cysteine Proteases for Entry but Exhibit Distinct Protease Preferences. Journal of Virology, 2012, 86, 3284-3292.	1.5	114
26	Critical Role of Leucine-Valine Change in Distinct Low pH Requirements for Membrane Fusion between Two Related Retrovirus Envelopes. Journal of Biological Chemistry, 2012, 287, 7640-7651.	1.6	11
27	Membrane Fusion and Cell Entry of XMRV Are pH-Independent and Modulated by the Envelope Glycoprotein's Cytoplasmic Tail. PLoS ONE, 2012, 7, e33734.	1.1	12
28	Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature, 2011, 477, 344-348.	13.7	601
29	Single residues in the surface subunits of oncogenic sheep retrovirus envelopes distinguish receptor-mediated triggering for fusion at low pH and infection. Virology, 2011, 421, 173-183.	1.1	8
30	Receptor Binding and Low pH Coactivate Oncogenic Retrovirus Envelope-Mediated Fusion. Journal of Virology, 2009, 83, 11447-11455.	1.5	27
31	Fusogenicity of Jaagsiekte Sheep Retrovirus Envelope Protein Is Dependent on Low pH and Is Enhanced by Cytoplasmic Tail Truncations. Journal of Virology, 2008, 82, 2543-2554.	1.5	25
32	Jaagsiekte Sheep Retrovirus Utilizes a pH-Dependent Endocytosis Pathway for Entry. Journal of Virology, 2008, 82, 2555-2559.	1.5	32
33	Enzootic Nasal Tumor Virus Envelope Requires a Very Acidic pH for Fusion Activation and Infection. Journal of Virology, 2008, 82, 9023-9034.	1.5	24
34	Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence. Biochemical and Biophysical Research Communications, 2007, 360, 219-225.	1.0	22
35	Acquired resistance to TRAIL-induced apoptosis in human ovarian cancer cells is conferred by increased turnover of mature caspase-3. Molecular Cancer Therapeutics, 2006, 5, 509-521.	1.9	46
36	Bcl-2 decreases cell proliferation and promotes accumulation of cells in S phase without affecting the rate of apoptosis in human ovarian carcinoma cells. Gynecologic Oncology, 2005, 97, 796-806.	0.6	29

#	Article	IF	CITATIONS
37	BAG-1 p29 protein prevents drug-induced cell death in the presence of EGF and enhances resistance to anoikis in SKOV3 human ovarian cancer cells. Biochemical and Biophysical Research Communications, 2005, 328, 874-884.	1.0	13
38	Differential induction of apoptosis by tumor necrosis factor-related apoptosis-inducing ligand in human ovarian carcinoma cells. Gynecologic Oncology, 2004, 93, 594-604.	0.6	53