Ting Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/462837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal Rectifier and Thermal Transistor of 1T/2H MoS ₂ for Heat Flow Management. ACS Applied Materials & Interfaces, 2022, 14, 4434-4442.	8.0	7
2	Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy and Environmental Science, 2022, 15, 2374-2385.	30.8	51
3	Thermally drawn multifunctional fibers: Toward the next generation of information technology. InformaÄnÃ-Materiály, 2022, 4, .	17.3	21
4	Cadmium impairs zebrafish swim bladder development via ROS mediated inhibition of the Wnt / Hedgehog pathway. Aquatic Toxicology, 2022, 247, 106180.	4.0	6
5	Charge Balance in Red QLEDs for High Efficiency and Stability via Ionic Liquid Doping. Advanced Functional Materials, 2022, 32, .	14.9	17
6	Highâ€Capacity Ironâ€Based Anodes for Aqueous Secondary Nickelâ^'Iron Batteries: Recent Progress and Prospects. ChemElectroChem, 2021, 8, 274-290.	3.4	23
7	Phosphoric Acid: A Key Role in Control of Structure and Properties of Vanadium Phosphorus Oxide Catalysts During Synthesis. ChemistrySelect, 2021, 6, 513-521.	1.5	9
8	A Review on Flexible Thermoelectric Technology: Material, Device, and Applications. International Journal of Thermophysics, 2021, 42, 1.	2.1	10
9	Recent Advances and Prospects of Fiber‣haped Rechargeable Aqueous Alkaline Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100060.	5.8	5
10	Dietary chicory powder supplementation affects growth performance, carcass traits, and muscular profiles of amino acids and fatty acids in growing-finishing Xiangcun Black pigs. Journal of Applied Animal Research, 2021, 49, 46-52.	1.2	0
11	Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy and Environmental Science, 2021, 14, 729-764.	30.8	143
12	New Progress on Fiber-Based Thermoelectric Materials: Performance, Device Structures and Applications. Materials, 2021, 14, 6306.	2.9	11
13	Highâ€Capacity Ironâ€Based Anodes for Aqueous Secondary Nickel–Iron Batteries: Recent Progress and Prospects. ChemElectroChem, 2021, 8, 273-273.	3.4	2
14	High-Efficiency Flexible Organic Photovoltaics and Thermoelectricities Based on Thionyl Chloride Treated PEDOT:PSS Electrodes. Frontiers in Chemistry, 2021, 9, 807538.	3.6	3
15	All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Materials, 2020, 25, 124-130.	18.0	100
16	Controlled Fragmentation of Single-Atom-Thick Polycrystalline Graphene. Matter, 2020, 2, 666-679.	10.0	45
17	Designer patterned functional fibers via direct imprinting in thermal drawing. Nature Communications, 2020, 11, 3842.	12.8	36
18	Singleâ€Crystal SnSe Thermoelectric Fibers via Laserâ€Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Advanced Materials. 2020. 32. e2002702.	21.0	57

TING ZHANG

#	Article	IF	CITATIONS
19	Experimental Study on Thermal Conductivity and Rectification in Suspended Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2020, 12, 28306-28312.	8.0	20
20	Thermoelectric Fibers. Progress in Optical Science and Photonics, 2020, , 175-197.	0.5	0
21	In-Fiber Production of Laser-Structured Stress-Mediated Semiconductor Particles. ACS Applied Materials & Interfaces, 2019, 11, 45330-45337.	8.0	8
22	Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. Nano Letters, 2019, 19, 4035-4042.	9.1	202
23	In-fibre particle manipulation and device assembly via laser induced thermocapillary convection. Nature Communications, 2019, 10, 5206.	12.8	29
24	Carbon Nanotube/Alkane Composites for Efficient Room-Temperature Electrical Switching in Temperature Sensors and Controllers. ACS Applied Nano Materials, 2019, 2, 7766-7774.	5.0	5
25	Ultraflexible Classy Semiconductor Fibers for Thermal Sensing and Positioning. ACS Applied Materials & amp; Interfaces, 2019, 11, 2441-2447.	8.0	50
26	Fully Solarâ€Powered Uninterrupted Overall Waterâ€5plitting Systems. Advanced Functional Materials, 2019, 29, 1808889.	14.9	24
27	Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers. Journal of Lightwave Technology, 2018, 36, 2409-2415.	4.6	60
28	Formation of ultra-flexible, conformal, and nano-patterned photonic surfaces <i>via</i> polymer cold-drawing. Journal of Materials Chemistry C, 2018, 6, 4649-4657.	5.5	17
29	Electron-Rich Two-Dimensional Molybdenum Trioxides for Highly Integrated Plasmonic Biosensing. ACS Photonics, 2018, 5, 347-352.	6.6	45
30	Microfluidic Analyzer Enabling Quantitative Measurements of Specific Intracellular Proteins at the Single-Cell Level. Micromachines, 2018, 9, 588.	2.9	2
31	Allâ€Metalâ€Organic Frameworkâ€Derived Battery Materials on Carbon Nanotube Fibers for Wearable Energyâ€ S torage Device. Advanced Science, 2018, 5, 1801462.	11.2	89
32	Highly Oriented Electrospun P(VDFâ€TrFE) Fibers via Mechanical Stretching for Wearable Motion Sensing. Advanced Materials Technologies, 2018, 3, 1800033.	5.8	46
33	High-performance flexible all-solid-state aqueous rechargeable Zn–MnO ₂ microbatteries integrated with wearable pressure sensors. Journal of Materials Chemistry A, 2018, 6, 14594-14601.	10.3	91
34	Flexible Piezoelectric Fibers for Acoustic Sensing and Positioning. Advanced Electronic Materials, 2017, 3, 1600449.	5.1	44
35	Mechanically Durable and Flexible Thermoelectric Films from PEDOT:PSS/PVA/Bi _{0.5} Sb _{1.5} Te ₃ Nanocomposites. Advanced Electronic Materials, 2017, 3, 1600554.	5.1	80

Wearable Electronics: Mechanically Durable and Flexible Thermoelectric Films from PEDOT:PSS/PVA/Bi_{0.5}Sb_{1.5}Te₃ Nanocomposites (Adv. Electron.) Tj ETQq0 @.@ rgBT /@verlock 10

TING ZHANG

#	Article	IF	CITATIONS
37	Laserâ€Induced Inâ€Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles. Advanced Functional Materials, 2017, 27, 1703245.	14.9	29
38	High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 2017, 41, 35-42.	16.0	132
39	Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides <i>via</i> Mechanical Instabilities. ACS Nano, 2017, 11, 9191-9199.	14.6	53
40	Particles: Laserâ€Induced Inâ€Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles (Adv. Funct. Mater. 43/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
41	Analysis of nutrient transport and ecological response in Honghu Lake, China by using a mathematical model. Science of the Total Environment, 2017, 575, 418-428.	8.0	37
42	High-Q silicon microsphere whispering gallery mode resonator fabricated by laser induced in-fiber capillary instability. , 2017, , .		0
43	Azimuthally Polarized Radial Emission from a Quantum Dot Fiber Laser. ACS Photonics, 2016, 3, 2275-2279.	6.6	27
44	Integrated liquid crystal photonic bandgap fiber devices. Frontiers of Optoelectronics, 2016, 9, 466-482.	3.7	6
45	Preparation of AZO nanoparticles, ceramic targets and thin films by a Co-precipitaition method. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 1134-1139.	1.0	3
46	High thermoelectric figure-of-merits from large-area porous silicon nanowire arrays. Nano Energy, 2015, 13, 433-441.	16.0	95
47	Effect of dehydrated-attapulgite nanoinclusions on the thermoelectric properties of BiSbTe alloys. RSC Advances, 2013, 3, 4951.	3.6	11
48	In Situ Precipitation of Te Nanoparticles in p-Type BiSbTe and the Effect on Thermoelectric Performance. ACS Applied Materials & Interfaces, 2013, 5, 3071-3074.	8.0	33
49	Thermoelectric performance of the ordered In4Se3–In composite constructed by monotectic solidification. Journal of Materials Chemistry A, 2013, 1, 8844.	10.3	23
50	Enhanced thermoelectric figure of merit in p-type BiSbTeSe alloy with ZnSb addition. Journal of Materials Chemistry A, 2013, 1, 966-969.	10.3	28
51	Printed carbon nanotube devices and their applications. , 2012, , .		2
52	Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO. Applied Physics Letters, 2011, 98, .	3.3	62
53	Enhanced biodesulfurization by magnetic immobilized Rhodococcus erythropolis LSSE8-1-vgb assembled with nano-γ-Al2O3. World Journal of Microbiology and Biotechnology, 2011, 27, 299-305.	3.6	24
54	Ultraâ€deep desulfurization adsorbents for hydrotreated diesel with magnetic mesoporous aluminosilicates. AICHE Journal, 2010, 56, 1391-1396.	3.6	13

#	Article	IF	CITATIONS
55	Multifunctional singleâ€crystal tellurium core multimaterial fiber via thermal drawing and laser recrystallization. Journal of the American Ceramic Society, 0, , .	3.8	6