
David T Mauger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4628163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ: British Medical Journal, 2017, 356, i6583.	2.3	1,408
2	Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respiratory Medicine,the, 2016, 4, 574-584.	10.7	375
3	COVID-19–related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 83-90.	5.6	370
4	Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. Journal of Clinical Investigation, 2018, 128, 997-1009.	8.2	337
5	Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes and Endocrinology,the, 2021, 9, 276-292.	11.4	292
6	Effect of Vitamin D ₃ on Asthma Treatment Failures in Adults With Symptomatic Asthma and Lower Vitamin D Levels. JAMA - Journal of the American Medical Association, 2014, 311, 2083.	7.4	236
7	Vitamin D supplementation to prevent asthma exacerbations: a systematic review and meta-analysis of individual participant data. Lancet Respiratory Medicine,the, 2017, 5, 881-890.	10.7	236
8	Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technology Assessment, 2019, 23, 1-44.	2.8	230
9	Early Administration of Azithromycin and Prevention of Severe Lower Respiratory Tract Illnesses in Preschool Children With a History of Such Illnesses. JAMA - Journal of the American Medical Association, 2015, 314, 2034.	7.4	224
10	Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. Journal of Allergy and Clinical Immunology, 2017, 140, 63-75.	2.9	222
11	Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 545-554.e4.	3.8	210
12	Individualized therapy for persistent asthma in young children. Journal of Allergy and Clinical Immunology, 2016, 138, 1608-1618.e12.	2.9	208
13	The Role of Neutrophils in the Production of Hypoxic-Ischemic Brain Injury in the Neonatal Rat. Pediatric Research, 1997, 41, 607-616.	2.3	168
14	Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1076-1085.	5.6	165
15	Factors associated with asthma exacerbations during a long-term clinical trial of controller medications in children. Journal of Allergy and Clinical Immunology, 2008, 122, 741-747.e4.	2.9	157
16	Neutrophil cytoplasts induce T _H 17 differentiation and skew inflammation toward neutrophilia in severe asthma. Science Immunology, 2018, 3, .	11.9	157
17	Prevention of Recurrent Foot Ulcers With Plantar Pressure–Based In-Shoe Orthoses: The CareFUL Prevention Multicenter Randomized Controlled Trial. Diabetes Care, 2014, 37, 1982-1989.	8.6	140
18	Refractory airway type 2 inflammation in a large subgroup of asthmatic patients treated with inhaled corticosteroids. Journal of Allergy and Clinical Immunology, 2019, 143, 104-113.e14.	2.9	135

DAVID T MAUGER

#	Article	IF	CITATIONS
19	Quintupling Inhaled Glucocorticoids to Prevent Childhood Asthma Exacerbations. New England Journal of Medicine, 2018, 378, 891-901.	27.0	115
20	Evidence for Exacerbation-Prone Asthma and Predictive Biomarkers of Exacerbation Frequency. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 973-982.	5.6	105
21	The upper-airway microbiota and loss of asthma control among asthmatic children. Nature Communications, 2019, 10, 5714.	12.8	100
22	Bacterial biogeography of adult airways in atopic asthma. Microbiome, 2018, 6, 104.	11.1	93
23	Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1439-1448.	5.6	87
24	Natural killer cell–mediated inflammation resolution is disabled in severe asthma. Science Immunology, 2017, 2, .	11.9	76
25	Racial disparities in asthma-related health care use in the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2019, 143, 2052-2061.	2.9	65
26	Phenotypes of Recurrent Wheezing in Preschool Children: Identification by Latent Class Analysis and Utility in Prediction of Future Exacerbation. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 915-924.e7.	3.8	47
27	Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. Journal of Allergy and Clinical Immunology, 2020, 146, 1016-1026.	2.9	46
28	Severe asthma during childhood and adolescence: AÂlongitudinal study. Journal of Allergy and Clinical Immunology, 2020, 145, 140-146.e9.	2.9	45
29	Daily Diaries vs Retrospective Questionnaires to Assess Asthma Control and Therapeutic Responses in Asthma Clinical Trials. Chest, 2013, 143, 993-999.	0.8	39
30	Race is associated with differences in airway inflammation in patients with asthma. Journal of Allergy and Clinical Immunology, 2017, 140, 257-265.e11.	2.9	39
31	Mixed Sputum Granulocyte Longitudinal Impact on Lung Function in the Severe Asthma Research Program. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 882-892.	5.6	39
32	Ornithine decarboxylase over-expression stimulates mitogen-activated protein kinase and anchorage-independent growth of human breast epithelial cells. , 1997, 70, 175-182.		30
33	Quantitative CT metrics are associated with longitudinal lung function decline and future asthma exacerbations: Results from SARP-3. Journal of Allergy and Clinical Immunology, 2021, 148, 752-762.	2.9	30
34	ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight, 2017, 2, .	5.0	29
35	The association between vitamin D status andÂthe rate of exacerbations requiring oral corticosteroids in preschool children with recurrent wheezing. Journal of Allergy and Clinical Immunology, 2014, 133, 1489-1492.e3.	2.9	27
36	Benefits of Airway Androgen Receptor Expression in Human Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 285-293.	5.6	26

DAVID T MAUGER

#	Article	IF	CITATIONS
37	Heterogeneity of Mild to Moderate Persistent Asthma in Children: Confirmation by Latent Class Analysis and Association with 1-Year Outcomes. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2617-2627.e4.	3.8	21
38	Development and initial validation of the Asthma Severity Scoring System (ASSESS). Journal of Allergy and Clinical Immunology, 2020, 145, 127-139.	2.9	19
39	Overweight/obesity status in preschool children associates with worse asthma but robust improvement on inhaled corticosteroids. Journal of Allergy and Clinical Immunology, 2018, 141, 1459-1467.e2.	2.9	15
40	Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 841-852.	5.6	14
41	Geography, generalisability, and susceptibility in clinical trials. Lancet Respiratory Medicine,the, 2021, 9, 330-332.	10.7	12
42	Clinical significance of the bronchodilator response in children with severe asthma. Pediatric Pulmonology, 2019, 54, 1694-1703.	2.0	10
43	Internet-Based Monitoring in the Severe Asthma Research Program Identifies a Subgroup of Patients With Labile Asthma Control. Chest, 2018, 153, 378-386.	0.8	6
44	Glutathione and arginine levels: Predictors for acetaminophen-associated asthma exacerbation?. Journal of Allergy and Clinical Immunology, 2018, 142, 308-311.e9.	2.9	3
45	Quantitative CT Characteristics of Cluster Phenotypes in the Severe Asthma Research Program Cohorts. Radiology, 2022, 304, 450-459.	7.3	3
46	Challenges in assessing the efficacy of systemic corticosteroids for severe wheezing episodes in preschool children. Journal of Allergy and Clinical Immunology, 2019, 143, 1934-1937.e4.	2.9	2
47	Clinical and molecular implications of RGS2 promoter genetic variation in severe asthma. Journal of Allergy and Clinical Immunology, 2022, 150, 721-726.e1.	2.9	1
48	Applying the Clinical Literature to a Science of Uncertainty and an Art of Probability. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 4233-4234.	3.8	1
49	Reply. Journal of Allergy and Clinical Immunology, 2017, 140, 1213.	2.9	0
50	Metaâ€Analysis: Effects of a Moderate Fat (MF) versus Lowerâ€Fat (LF) Diets on Serum Lipid Profile. FASEB Journal, 2007, 21, A698.	0.5	0