
Xiaofei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4628094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nature Genetics, 2016, 48, 1576-1580.	21.4	299
2	A Pipeline Strategy for Grain Crop Domestication. Crop Science, 2016, 56, 917-930.	1.8	101
3	Establishment and Optimization of Genomic Selection to Accelerate the Domestication and Improvement of Intermediate Wheatgrass. Plant Genome, 2016, 9, plantgenome2015.07.0059.	2.8	86
4	New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat. PLoS ONE, 2010, 5, e13548.	2.5	74
5	Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biology, 2012, 12, 243.	3.6	68
6	Perennial Grain and Oilseed Crops. Annual Review of Plant Biology, 2016, 67, 703-729.	18.7	68
7	â€~MN learwater', the first foodâ€grade intermediate wheatgrass (Kernza perennial grain) cultivar. Journal of Plant Registrations, 2020, 14, 288-297.	0.5	58

 $_8$ Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{43}^{50}$ 462 Tc

9	Genome-Wide Association Study of Yield Component Traits in Intermediate Wheatgrass and Implications in Genomic Selection and Breeding. G3: Genes, Genomes, Genetics, 2019, 9, 2429-2439.	1.8	34
10	Development and verification of wheat germplasm containing both Sr2 and Fhb1. Molecular Breeding, 2016, 36, 1.	2.1	32
11	Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium). Theoretical and Applied Genetics, 2019, 132, 2325-2351.	3.6	30
12	Enhancing Crop Domestication Through Genomic Selection, a Case Study of Intermediate Wheatgrass. Frontiers in Plant Science, 2020, 11, 319.	3.6	28
13	Uncovering the Genetic Architecture of Seed Weight and Size in Intermediate Wheatgrass through Linkage and Association Mapping. Plant Genome, 2017, 10, plantgenome2017.03.0022.	2.8	26
14	Development of genotyping by sequencing (GBS)- and array-derived SNP markers for stem rust resistance gene Sr42. Molecular Breeding, 2015, 35, 1.	2.1	24
15	New insights into high-molecular-weight glutenin subunits and sub-genomes of the perennial crop Thinopyrum intermedium (Triticeae). Journal of Cereal Science, 2014, 59, 203-210.	3.7	22
16	Towards the understanding of end-use quality in intermediate wheatgrass (Thinopyrum intermedium): High-molecular-weight glutenin subunits, protein polymerization, and mixing characteristics. Journal of Cereal Science, 2015, 66, 81-88.	3.7	20
17	Dominance and G×E interaction effects improve genomic prediction and genetic gain in intermediate wheatgrass (<i>Thinopyrum intermedium</i>). Plant Genome, 2020, 13, e20012.	2.8	19
18	Floret site utilization and reproductive tiller number are primary components of grain yield in intermediate wheatgrass spaced plants. Crop Science, 2021, 61, 1073-1088.	1.8	19

XIAOFEI ZHANG

#	Article	IF	CITATIONS
19	Fifty years of a public cassava breeding program: evolution of breeding objectives, methods, and decision-making processes. Theoretical and Applied Genetics, 2021, 134, 2335-2353.	3.6	18
20	Characterization of Genetic Resistance to Fusarium Head Blight and Bacterial Leaf Streak in Intermediate Wheatgrass (Thinopyrum intermedium). Agronomy, 2019, 9, 429.	3.0	14
21	Correlation of cooking time with water absorption and changes in relative density during boiling of cassava roots. International Journal of Food Science and Technology, 2021, 56, 1193-1205.	2.7	11
22	ldentifying New Resistance to Cassava Mosaic Disease and Validating Markers for the CMD2 Locus. Agriculture (Switzerland), 2021, 11, 829.	3.1	8
23	High-Throughput Virus Screening in Crosses of South American and African Cassava Germplasm Reveals Broad-Spectrum Resistance against Viruses Causing Cassava Brown Streak Disease and Cassava Mosaic Virus Disease. Agronomy, 2022, 12, 1055.	3.0	7