Lenaic Lartigue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4627658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS Nano, 2012, 6, 3080-3091.	14.6	638
2	Cooperative Organization in Iron Oxide Multi-Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents. ACS Nano, 2012, 6, 10935-10949.	14.6	341
3	Magnetic hyperthermia efficiency in the cellular environment forÂdifferent nanoparticle designs. Biomaterials, 2014, 35, 6400-6411.	11.4	341
4	Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia. Journal of Physical Chemistry C, 2012, 116, 15702-15712.	3.1	240
5	Water-Dispersible Sugar-Coated Iron Oxide Nanoparticles. An Evaluation of their Relaxometric and Magnetic Hyperthermia Properties. Journal of the American Chemical Society, 2011, 133, 10459-10472.	13.7	236
6	Biodegradation of Iron Oxide Nanocubes: High-Resolution <i>In Situ</i> Monitoring. ACS Nano, 2013, 7, 3939-3952.	14.6	233
7	Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators―of the Tumoral Microenvironment. ACS Nano, 2014, 8, 4268-4283.	14.6	200
8	The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano, 2015, 9, 7925-7939.	14.6	180
9	Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake. ACS Nano, 2012, 6, 2665-2678.	14.6	154
10	Biotransformations of magnetic nanoparticles in the body. Nano Today, 2016, 11, 280-284.	11.9	124
11	Mastering the Shape and Composition of Dendronized Iron Oxide Nanoparticles To Tailor Magnetic Resonance Imaging and Hyperthermia. Chemistry of Materials, 2014, 26, 5252-5264.	6.7	105
12	Managing Magnetic Nanoparticle Aggregation and Cellular Uptake: a Precondition for Efficient Stem ell Differentiation and MRI Tracking. Advanced Healthcare Materials, 2013, 2, 313-325.	7.6	73
13	Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. Journal of Magnetism and Magnetic Materials, 2016, 416, 315-320.	2.3	59
14	Water-Soluble Rhamnose-Coated Fe ₃ O ₄ Nanoparticles. Organic Letters, 2009, 11, 2992-2995.	4.6	52
15	Biodegradation Mechanisms of Iron Oxide Monocrystalline Nanoflowers and Tunable Shield Effect of Gold Coating. Small, 2014, 10, 3325-3337.	10.0	43
16	Covalent Functionalization of Multiâ€walled Carbon Nanotubes with a Gadolinium Chelate for Efficient <i>T</i> ₁ â€Weighted Magnetic Resonance Imaging. Advanced Functional Materials, 2014, 24, 7173-7186.	14.9	31
17	Small Moleculeâ€Based Fluorescent Organic Nanoassemblies with Strong Hydrogen Bonding Networks for Fine Tuning and Monitoring Drug Delivery in Cancer Cells. Small, 2018, 14, e1802307.	10.0	31
18	Superspin-glass behavior of Co3[Fe(CN)6]2 Prussian blue nanoparticles confined in mesoporous silica. Materials Chemistry and Physics, 2012, 132, 438-445.	4.0	26

LENAIC LARTIGUE

#	Article	IF	CITATIONS
19	Thermosensitivity profile of malignant glioma U87-MG cells and human endothelial cells following γ-Fe ₂ O ₃ NPs internalization and magnetic field application. RSC Advances, 2016, 6, 15415-15423.	3.6	23
20	NMR investigation of functionalized magnetic nanoparticles Fe3O4 as T1–T2 contrast agents. Powder Technology, 2014, 255, 60-65.	4.2	22
21	Luminophore and Magnetic Multicore Nanoassemblies for Dual-Mode MRI and Fluorescence Imaging. Nanomaterials, 2020, 10, 28.	4.1	22
22	Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	20
23	Tuning the architectural integrity of high-performance magneto-fluorescent core-shell nanoassemblies in cancer cells. Journal of Colloid and Interface Science, 2016, 479, 139-149.	9.4	17
24	Controlled synthesis from alginate gels of cobalt–manganese mixed oxide nanocrystals with peculiar magnetic properties. Catalysis Today, 2012, 189, 49-54.	4.4	16
25	Bioconjugated fluorescent organic nanoparticles targeting EGFR-overexpressing cancer cells. Nanoscale, 2017, 9, 18094-18106.	5.6	14
26	NMR-D study of the local spin dynamics and magnetic anisotropy in different nearly monodispersed ferrite nanoparticles. Journal of Physics Condensed Matter, 2013, 25, 066008.	1.8	13
27	Surface decoration of catanionic vesicles with superparamagnetic iron oxide nanoparticles: a model system for triggered release under moderate temperature conditions. Physical Chemistry Chemical Physics, 2014, 16, 4077.	2.8	13
28	PEGylated Anionic Magnetofluorescent Nanoassemblies: Impact of Their Interface Structure on Magnetic Resonance Imaging Contrast and Cellular Uptake. ACS Applied Materials & Interfaces, 2017, 9, 14242-14257.	8.0	13
29	Phosphonic Acid Fluorescent Organic Nanoparticles for High-Contrast and Selective Staining of Gram-Positive Bacteria. ACS Omega, 2018, 3, 17392-17402.	3.5	8
30	Coating Effect on the 1H—NMR Relaxation Properties of Iron Oxide Magnetic Nanoparticles. Nanomaterials, 2020, 10, 1660.	4.1	8
31	Iron carbide nanoparticles growth in room temperature ionic liquids [C n -MIM][BF4] (nÂ=Â12, 16). Journal of Nanoparticle Research, 2013, 15, 1.	1.9	7
32	Autocatalytic sonolysis of iron pentacarbonyl in room temperature ionic liquid [BuMeIm][Tf ₂ N]. Physical Chemistry Chemical Physics, 2011, 13, 2111-2113.	2.8	6
33	Low-temperature anomalies in muon spin relaxation of solid and hollowγâ^'Fe2O3nanoparticles: A pathway to detect unusual local spin dynamics. Physical Review B, 2020, 102, .	3.2	4
34	Strong Color Tuning of Selfâ€Assembled Azoâ€Derived Phosphonic Acids upon Hydrogen Bonding. ChemPhotoChem, 2017, 1, 6-11.	3.0	2
35	Water Dispersible Carbohydrate-Coated Ferrite Nanoparticles. Effect of Cobalt Doping in Magneto-Thermal Properties. Journal of Nanoscience and Nanotechnology, 2019, 19, 5000-5007.	0.9	2
36	Challenges and Opportunities in Transmission Electron Microscopy for Revealing the Fate of Inorganic Nanomaterials in Living Beings. Microscopy and Microanalysis, 2018, 24, 1694-1695.	0.4	0