Frederic Lagarrigue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4626850/publications.pdf

Version: 2024-02-01

25 889 17 23 papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Direct Binding of Rap1 to Talin1 and to MRL Proteins Promotes Integrin Activation in CD4+ T Cells. Journal of Immunology, 2022, 208, 1378-1388.	0.8	6
2	The Connection Between Rap1 and Talin1 in the Activation of Integrins in Blood Cells. Frontiers in Cell and Developmental Biology, 2022, 10 , .	3.7	4
3	Phostensin enables lymphocyte integrin activation and population of peripheral lymphoid organs. Journal of Experimental Medicine, 2022, 219, .	8.5	1
4	Src-mediated phosphorylation of RIAM promotes integrin activation. Structure, 2021, 29, 305-307.	3.3	0
5	Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. Journal of Clinical Investigation, 2021, 131, .	8.2	32
6	Optogenetics-based localization of talin to the plasma membrane promotes activation of \hat{l}^2 3 integrins. Journal of Biological Chemistry, 2021, 296, 100675.	3.4	5
7	Distinct integrin activation pathways for effector and regulatory T cell trafficking and function. Journal of Experimental Medicine, 2021, 218, .	8.5	27
8	MARCH Proteins Mediate Responses to Antitumor Antibodies. Journal of Immunology, 2020, 205, 2883-2892.	0.8	5
9	Talin-1 is the principal platelet Rap1 effector of integrin activation. Blood, 2020, 136, 1180-1190.	1.4	52
10	Differential Use of Rap1 Effectors for Integrin Activation in Platelets and Lymphocytes. Blood, 2020, 136, 27-28.	1.4	0
11	Rap1 binding and a lipid-dependent helix in talin F1 domain promote integrin activation in tandem. Journal of Cell Biology, 2019, 218, 1799-1809.	5.2	45
12	Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice. Blood, 2019, 133, 193-204.	1.4	60
13	Transmission of integrin Î ² 7 transmembrane domain topology enables gut lymphoid tissue development. Journal of Cell Biology, 2018, 217, 1453-1465.	5.2	22
14	Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation. Blood Advances, 2018, 2, 2358-2368.	5.2	30
15	Cutting Edge: Loss of T Cell RIAM Precludes Conjugate Formation with APC and Prevents Immune-Mediated Diabetes. Journal of Immunology, 2017, 198, 3410-3415.	0.8	15
16	Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. Journal of Experimental Medicine, 2017, 214, 3331-3346.	8.5	80
17	The Rap1-RIAM-talin axis of integrin activation and blood cell function. Blood, 2016, 128, 479-487.	1.4	110
18	A RIAM/lamellipodin–talin–integrin complex forms the tip of sticky fingers that guide cell migration. Nature Communications, 2015, 6, 8492.	12.8	85

#	Article	IF	CITATION
19	Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1. Nature Communications, 2014, 5, 4080.	12.8	60
20	SnapShot: Talin and the Modular Nature of the Integrin Adhesome. Cell, 2014, 156, 1340-1340.e1.	28.9	21
21	ALK+ALCLs induce cutaneous, HMGB-1–dependent IL-8/CXCL8 production by keratinocytes through NF-κB activation. Blood, 2012, 119, 4698-4707.	1.4	31
22	<i>Shigella flexneri</i> Infection Generates the Lipid PI5P to Alter Endocytosis and Prevent Termination of EGFR Signaling. Science Signaling, 2011, 4, ra61.	3.6	98
23	The Nucleophosmin-Anaplastic Lymphoma Kinase Oncogene Interacts, Activates, and Uses the Kinase PIKfyve to Increase Invasiveness. Journal of Biological Chemistry, 2011, 286, 32105-32114.	3.4	21
24	Matrix Metalloproteinase-9 Is Upregulated in Nucleophosmin-Anaplastic Lymphoma Kinase–Positive Anaplastic Lymphomas and Activated at the Cell Surface by the Chaperone Heat Shock Protein 90 to Promote Cell Invasion. Cancer Research, 2010, 70, 6978-6987.	0.9	48
25	PtdIns5P protects Akt from dephosphorylation through PP2A inhibition. Biochemical and Biophysical Research Communications, 2009, 387, 127-131.	2.1	28