Juliane Hollender

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4626566/publications.pdf Version: 2024-02-01

	10986	12597
19,827	71	132
citations	h-index	g-index
001	001	1 (0 7 4
231	231	16074
docs citations	times ranked	citing authors
	citations 231	19,827 71 citations h-index 231 231

#	Article	IF	CITATIONS
1	Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environmental Science & Technology, 2014, 48, 2097-2098.	10.0	2,300
2	Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environmental Science & Technology, 2009, 43, 7862-7869.	10.0	726
3	MetFrag relaunched: incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 2016, 8, 3.	6.1	665
4	LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Analytical and Bioanalytical Chemistry, 2010, 397, 943-951.	3.7	615
5	Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 6237-6255.	3.7	489
6	Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go?. Environmental Science & Technology, 2017, 51, 11505-11512.	10.0	453
7	Reducing the Discharge of Micropollutants in the Aquatic Environment: The Benefits of Upgrading Wastewater Treatment Plants. Environmental Science & Technology, 2014, 48, 7683-7689.	10.0	451
8	Strategies to Characterize Polar Organic Contamination in Wastewater: Exploring the Capability of High Resolution Mass Spectrometry. Environmental Science & Technology, 2014, 48, 1811-1818.	10.0	333
9	How a Complete Pesticide Screening Changes the Assessment of Surface Water Quality. Environmental Science & Technology, 2014, 48, 5423-5432.	10.0	292
10	Effect-directed analysis supporting monitoring of aquatic environments — An in-depth overview. Science of the Total Environment, 2016, 544, 1073-1118.	8.0	288
11	Identification of Transformation Products of Organic Contaminants in Natural Waters by Computer-Aided Prediction and High-Resolution Mass Spectrometry. Environmental Science & Technology, 2009, 43, 7039-7046.	10.0	275
12	Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environmental Science & Technology, 2015, 49, 12333-12341.	10.0	263
13	Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: Micropollutant oxidation, by-product formation and disinfection. Water Research, 2011, 45, 605-617.	11.3	261
14	Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC - Trends in Analytical Chemistry, 2015, 66, 32-44.	11.4	258
15	Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Science of the Total Environment, 2017, 576, 720-737.	8.0	255
16	High-Throughput Identification of Microbial Transformation Products of Organic Micropollutants. Environmental Science & Technology, 2010, 44, 6621-6627.	10.0	250
17	Future water quality monitoring — Adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 2015, 512-513, 540-551.	8.0	243
18	Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1547-1552.	1.7	234

#	Article	IF	CITATIONS
19	Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon. Water Science and Technology, 2012, 66, 2115-2121.	2.5	211
20	Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2012, 1268, 74-83.	3.7	198
21	Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena. Water Research, 2008, 42, 1475-1488.	11.3	189
22	Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2215-2223.	1.7	179
23	Emerging pollutants in the EU: 10Âyears of NORMAN in support of environmental policies and regulations. Environmental Sciences Europe, 2018, 30, 5.	5.5	171
24	Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water. Environmental Pollution, 2010, 158, 3054-3064.	7.5	170
25	The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management. Science of the Total Environment, 2015, 503-504, 22-31.	8.0	163
26	Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Analytical and Bioanalytical Chemistry, 2008, 391, 2265-2276.	3.7	158
27	Alleviating the Reference Standard Dilemma Using a Systematic Exact Mass Suspect Screening Approach with Liquid Chromatography-High Resolution Mass Spectrometry. Analytical Chemistry, 2013, 85, 10312-10320.	6.5	153
28	European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Science of the Total Environment, 2017, 601-602, 1849-1868.	8.0	151
29	Accelerated Isotope Fine Structure Calculation Using Pruned Transition Trees. Analytical Chemistry, 2015, 87, 5738-5744.	6.5	150
30	Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. Journal of Hazardous Materials, 2020, 387, 121712.	12.4	150
31	Wastewater reuse and risk: definition of key objectives. Desalination, 2006, 187, 29-40.	8.2	146
32	Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. Water Research, 2017, 110, 366-377.	11.3	146
33	Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process. Water Research, 2013, 47, 4498-4506.	11.3	144
34	Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environmental Sciences Europe, 2019, 31, .	5.5	142
35	Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environmental Sciences Europe, 2019, 31, .	5.5	140
36	New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Research, 2019, 165, 114972.	11.3	134

#	Article	IF	CITATIONS
37	Screening of Lake Sediments for Emerging Contaminants by Liquid Chromatography Atmospheric Pressure Photoionization and Electrospray Ionization Coupled to High Resolution Mass Spectrometry. Environmental Science & Technology, 2013, 47, 976-986.	10.0	131
38	Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams. Science of the Total Environment, 2017, 576, 785-795.	8.0	131
39	Occurrence and removal of N-nitrosamines in wastewater treatment plants. Water Research, 2009, 43, 4381-4391.	11.3	129
40	Transfer Kinetics of Polar Organic Compounds over Polyethersulfone Membranes in the Passive Samplers Pocis and Chemcatcher. Environmental Science & Technology, 2012, 46, 6759-6766.	10.0	129
41	Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water. Water Research, 2017, 122, 234-245.	11.3	129
42	Mass Flows of X-ray Contrast Media and Cytostatics in Hospital Wastewater. Environmental Science & Technology, 2009, 43, 4810-4817.	10.0	125
43	Evaluation of in-situ calibration of Chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers. Water Research, 2015, 71, 306-317.	11.3	125
44	Model-Based Evaluation of Reduction Strategies for Micropollutants from Wastewater Treatment Plants in Complex River Networks. Environmental Science & Technology, 2009, 43, 3214-3220.	10.0	124
45	A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. Journal of Environmental Monitoring, 2010, 12, 2100.	2.1	119
46	Analysis of Nitrosamines in Wastewater:  Exploring the Trace Level Quantification Capabilities of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Analytical Chemistry, 2008, 80, 834-842.	6.5	113
47	Is the Hyporheic Zone Relevant beyond the Scientific Community?. Water (Switzerland), 2019, 11, 2230.	2.7	113
48	Catalytic center of cyclodextrin glycosyltransferase derived from x-ray structure analysis combined with site-directed mutagenesis. Biochemistry, 1992, 31, 8740-8746.	2.5	112
49	Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environmental Science and Pollution Research, 2013, 20, 3607-3615.	5.3	112
50	Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides – evaluation of three Chemcatcher™ configurations. Water Research, 2009, 43, 903-914.	11.3	110
51	Long-Term Persistence of Pesticides and TPs in Archived Agricultural Soil Samples and Comparison with Pesticide Application. Environmental Science & amp; Technology, 2017, 51, 10642-10651.	10.0	110
52	High resolution mass spectrometry-based non-target screening can support regulatory environmental monitoring and chemicals management. Environmental Sciences Europe, 2019, 31, .	5.5	107
53	Challenge of high polarity and low concentrations in analysis of cytostatics and metabolites in wastewater by hydrophilic interaction chromatography/tandem mass spectrometry. Journal of Chromatography A, 2009, 1216, 1100-1108.	3.7	106
54	Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments. Water Research, 2018, 142, 267-278.	11.3	105

#	Article	IF	CITATIONS
55	Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Applied Microbiology and Biotechnology, 2005, 67, 106-112.	3.6	103
56	Polymeric compounds in activated sludge supernatant — Characterisation and retention mechanisms at a full-scale municipal membrane bioreactor. Water Research, 2007, 41, 3894-3902.	11.3	102
57	Biotransformation of Benzotriazoles: Insights from Transformation Product Identification and Compound-Specific Isotope Analysis. Environmental Science & Technology, 2014, 48, 4435-4443.	10.0	101
58	Prioritizing Unknown Transformation Products from Biologically-Treated Wastewater Using High-Resolution Mass Spectrometry, Multivariate Statistics, and Metabolic Logic. Analytical Chemistry, 2015, 87, 12121-12129.	6.5	101
59	Exploring the Potential of a Global Emerging Contaminant Early Warning Network through the Use of Retrospective Suspect Screening with High-Resolution Mass Spectrometry. Environmental Science & Technology, 2018, 52, 5135-5144.	10.0	101
60	Uptake, Elimination, and Biotransformation of 17α-Ethinylestradiol by the Freshwater Alga <i>Desmodesmus subspicatus</i> . Environmental Science & Technology, 2014, 48, 12354-12361.	10.0	99
61	Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Research, 2014, 60, 228-241.	11.3	95
62	Structure-Based Interpretation of Biotransformation Pathways of Amide-Containing Compounds in Sludge-Seeded Bioreactors. Environmental Science & Technology, 2010, 44, 6628-6635.	10.0	93
63	Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Analytical and Bioanalytical Chemistry, 2014, 406, 7323-7335.	3.7	91
64	Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. Environmental Science & Technology, 2020, 54, 4400-4408.	10.0	91
65	Automatic recalibration and processing of tandem mass spectra using formula annotation. Journal of Mass Spectrometry, 2013, 48, 89-99.	1.6	87
66	Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in <i>Gammarus pulex</i> . Environmental Science & Technology, 2012, 46, 3498-3508.	10.0	84
67	Human risk assessment of organic contaminants in reclaimed wastewater used for irrigation. Desalination, 2006, 187, 53-64.	8.2	80
68	Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening. Analytical Chemistry, 2021, 93, 11601-11611.	6.5	79
69	Mixture Toxicity of Three Photosystem II Inhibitors (Atrazine, Isoproturon, and Diuron) Toward Photosynthesis of Freshwater Phytoplankton Studied in Outdoor Mesocosms. Environmental Science & Technology, 2008, 42, 6424-6430.	10.0	78
70	Slow Biotransformation of Carbon Nanotubes by Horseradish Peroxidase. Environmental Science & Technology, 2014, 48, 4826-4834.	10.0	77
71	Key objectives for water reuse concepts. Desalination, 2008, 218, 120-131.	8.2	75
72	Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: Kinetics and formation of transformation products. Water Research, 2016, 94, 350-362.	11.3	75

#	Article	IF	CITATIONS
73	High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environmental Sciences Europe, 2019, 31, .	5.5	74
74	Comprehensive Toxic Plants–Phytotoxins Database and Its Application in Assessing Aquatic Micropollution Potential. Journal of Agricultural and Food Chemistry, 2018, 66, 7577-7588.	5.2	72
75	Imidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka (Oryzias latipes) than in zebrafish (Danio rerio). Chemosphere, 2019, 225, 470-478.	8.2	71
76	Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System. Environmental Science & Technology, 2019, 53, 7584-7594.	10.0	70
77	Biotransformation Pathways of Biocides and Pharmaceuticals in Freshwater Crustaceans Based on Structure Elucidation of Metabolites Using High Resolution Mass Spectrometry. Chemical Research in Toxicology, 2013, 26, 313-324.	3.3	69
78	Degradation of Polar Organic Micropollutants during Riverbank Filtration: Complementary Results from Spatiotemporal Sampling and Push–Pull Tests. Environmental Science & Technology, 2013, 47, 11512-11521.	10.0	64
79	Elucidation of biotransformation of diclofenac and 4′hydroxydiclofenac during biological wastewater treatment. Journal of Hazardous Materials, 2016, 301, 443-452.	12.4	64
80	Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis. Science of the Total Environment, 2017, 581-582, 350-358.	8.0	63
81	Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation. Environmental Science and Pollution Research, 2010, 17, 341-354.	5.3	62
82	Unravelling Contaminants in the Anthropocene Using Statistical Analysis of Liquid Chromatography–High-Resolution Mass Spectrometry Nontarget Screening Data Recorded in Lake Sediments. Environmental Science & Technology, 2017, 51, 12547-12556.	10.0	61
83	Covalent Binding of Sulfamethazine to Natural and Synthetic Humic Acids: Assessing Laccase Catalysis and Covalent Bond Stability. Environmental Science & amp; Technology, 2013, 47, 6916-6924.	10.0	60
84	Suspect Screening of Hydrocarbon Surfactants in AFFFs and AFFF-Contaminated Groundwater by High-Resolution Mass Spectrometry. Environmental Science & Technology, 2019, 53, 8068-8077.	10.0	59
85	The role of hydrodynamics, matrix and sampling duration in passive sampling of polar compounds with Emporeâ,,¢ SDB-RPS disks. Journal of Environmental Monitoring, 2008, 10, 119-128.	2.1	58
86	Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products. Journal of the American Society for Mass Spectrometry, 2017, 28, 2692-2704.	2.8	57
87	Formation of volutin granules inCorynebacterium glutamicum. FEMS Microbiology Letters, 2005, 243, 133-140.	1.8	56
88	Assessing the Fate of Nitrosamine Precursors in Wastewater Treatment by Physicochemical Fractionation. Environmental Science & Technology, 2010, 44, 7871-7877.	10.0	55
89	Metabolites Indicate Hot Spots of Biodegradation and Biogeochemical Gradients in a High-Resolution Monitoring Well. Environmental Science & Technology, 2011, 45, 474-481.	10.0	55
90	Aqueous and dietary bioaccumulation of antibiotic tetracycline in D. magna and its multigenerational transfer. Journal of Hazardous Materials, 2014, 279, 428-435.	12.4	54

#	Article	IF	CITATIONS
91	The degradation of α-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type Il ipso-substitution mechanism. Applied Microbiology and Biotechnology, 2006, 70, 114-122.	3.6	53
92	Solid-phase extraction as sample preparation of water samples for cell-based and other <i>in vitro</i> bioassays. Environmental Sciences: Processes and Impacts, 2018, 20, 493-504.	3.5	53
93	Untargeted time-pattern analysis of LC-HRMS data to detect spills and compounds with high fluctuation in influent wastewater. Journal of Hazardous Materials, 2019, 361, 19-29.	12.4	53
94	Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler. Analytical and Bioanalytical Chemistry, 2013, 405, 5225-5236.	3.7	52
95	Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Environmental Pollution, 2010, 158, 167-174.	7.5	51
96	Anaerobic testosterone degradation in Steroidobacter denitrificans – Identification of transformation products. Environmental Pollution, 2010, 158, 2572-2581.	7.5	51
97	Tracing Urban Wastewater Contaminants into the Atlantic Ocean by Nontarget Screening. Environmental Science & Technology, 2020, 54, 3996-4005.	10.0	50
98	Efficiency of Different Methods and Solvents for the Extraction of Polycyclic Aromatic Hydrocarbons from Soils. International Journal of Environmental Analytical Chemistry, 2003, 83, 21-32.	3.3	49
99	Reactions of a Sulfonamide Antimicrobial with Model Humic Constituents: Assessing Pathways and Stability of Covalent Bonding. Environmental Science & Technology, 2012, 46, 2102-2111.	10.0	48
100	Seasonal Dynamics of Glyphosate and AMPA in Lake Greifensee: Rapid Microbial Degradation in the Epilimnion During Summer. Environmental Science & Technology, 2018, 52, 4641-4649.	10.0	48
101	Comprehensive micropollutant screening using LC-HRMS/MS at three riverbank filtration sites to assess natural attenuation and potential implications for human health. Water Research X, 2018, 1, 100007.	6.1	48
102	Biotransformation study of antidepressant sertraline and its removal during biological wastewater treatment. Water Research, 2020, 181, 115864.	11.3	48
103	Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. Journal of Chromatography A, 2015, 1412, 43-51.	3.7	47
104	Biomonitoring of environmental polycyclic aromatic hydrocarbon exposure by simultaneous measurement of urinary phenanthrene, pyrene and benzo[a]pyrene hydroxides. Biomedical Applications, 2000, 739, 225-229.	1.7	46
105	Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test. Chemosphere, 2003, 53, 269-275.	8.2	46
106	Ecotoxicity of quinoline and hydroxylated derivatives and their occurrence in groundwater of a tar-contaminated field site. Ecotoxicology and Environmental Safety, 2009, 72, 819-827.	6.0	46
107	Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration – the Thur River case study. Hydrology and Earth System Sciences, 2014, 18, 2449-2462.	4.9	46
108	How Biotransformation Influences Toxicokinetics of Azole Fungicides in the Aquatic Invertebrate <i>Gammarus pulex</i> . Environmental Science & Technology, 2016, 50, 7175-7188.	10.0	46

#	Article	IF	CITATIONS
109	The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let's cooperate!. Environmental Sciences Europe, 2020, 32, .	5.5	46
110	Simultaneous determination of NSO-heterocycles, homocycles and their metabolites in groundwater of tar oil contaminated sites using LC with diode array UV and fluorescence detection. Journal of Chromatography A, 2005, 1065, 211-218.	3.7	45
111	Occurrence and composition of extracellular lipids and polysaccharides in a full-scale membrane bioreactor. Water Research, 2009, 43, 97-106.	11.3	45
112	Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. Water Research, 2014, 66, 411-422.	11.3	45
113	Regulation of chloro- and methylphenol degradation in Comamonas testosteroni JH5. Applied and Environmental Microbiology, 1994, 60, 2330-2338.	3.1	45
114	Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 359-364.	3.6	44
115	Sensitive indoor air monitoring of formaldehyde and other carbonyl compounds using the 2,4-dinitrophenylhydrazine method. International Journal of Hygiene and Environmental Health, 2001, 203, 275-279.	4.3	43
116	Multi-Level Approach for the Integrated Assessment of Polar Organic Micropollutants in an International Lake Catchment: The Example of Lake Constance. Environmental Science & Technology, 2013, 47, 7028-7036.	10.0	43
117	Extraction of polycyclic aromatic hydrocarbons from polluted soils with binary and ternary supercritical phases. Journal of Chromatography A, 1997, 776, 233-243.	3.7	42
118	Degradation of a Nonylphenol Single Isomer by Sphingomonas sp. Strain TTNP3 Leads to a Hydroxylation-Induced Migration Product. Applied and Environmental Microbiology, 2004, 70, 6897-6900.	3.1	42
119	Metabolism of 1,8-cineole by human cytochrome P450 enzymes: identification of a new hydroxylated metabolite. Biochimica Et Biophysica Acta - General Subjects, 2005, 1722, 304-311.	2.4	42
120	Micropollutant-induced tolerance of in situ periphyton: Establishing causality in wastewater-impacted streams. Water Research, 2017, 111, 185-194.	11.3	42
121	Internal Concentrations in Gammarids Reveal Increased Risk of Organic Micropollutants in Wastewater-Impacted Streams. Environmental Science & Technology, 2018, 52, 10347-10358.	10.0	42
122	Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples. Analytical and Bioanalytical Chemistry, 2019, 411, 2555-2567.	3.7	42
123	Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments. Science of the Total Environment, 2020, 740, 140181.	8.0	41
124	Linking toxicity in algal and bacterial assays with chemical analysis in passive samplers deployed in 21 treated sewage effluents. Environmental Toxicology and Chemistry, 2010, 29, 2575-2582.	4.3	39
125	Mechanistic Understanding of the Synergistic Potential of Azole Fungicides in the Aquatic Invertebrate <i>Gammarus pulex</i> . Environmental Science & Technology, 2017, 51, 12784-12795.	10.0	39
126	One planet: one health. A call to support the initiative on a global science–policy body on chemicals and waste. Environmental Sciences Europe, 2022, 34, 21.	5.5	39

#	Article	IF	CITATIONS
127	Getting in control of persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances to protect water resources: strategies from diverse perspectives. Environmental Sciences Europe, 2022, 34, .	5.5	39
128	Quinoline and Derivatives at a Tar Oil Contaminated Site:Â Hydroxylated Products as Indicator for Natural Attenuation?. Environmental Science & Technology, 2007, 41, 5314-5322.	10.0	38
129	Bacterial Diversity Controls Transformation of Wastewater-Derived Organic Contaminants in River-Simulating Flumes. Environmental Science & Technology, 2020, 54, 5467-5479.	10.0	38
130	EFFECTS OF PHOTOSYSTEM II INHIBITORS AND THEIR MIXTURE ON FRESHWATER PHYTOPLANKTON SUCCESSION IN OUTDOOR MESOCOSMS. Environmental Toxicology and Chemistry, 2009, 28, 836.	4.3	36
131	Compound-specific isotope analysis of benzotriazole and its derivatives. Analytical and Bioanalytical Chemistry, 2013, 405, 2843-2856.	3.7	36
132	Characterization of acetylcholinesterase inhibition and energy allocation in Daphnia magna exposed to carbaryl. Ecotoxicology and Environmental Safety, 2013, 98, 28-35.	6.0	36
133	Toxicokinetic Model Describing Bioconcentration and Biotransformation of Diazinon in Daphnia magna. Environmental Science & Technology, 2011, 45, 4995-5002.	10.0	35
134	Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. Water Research, 2021, 196, 116994.	11.3	35
135	Characterization of advanced wastewater treatment with ozone and activated carbon using LC-HRMS based non-target screening with automated trend assignment. Water Research, 2021, 200, 117209.	11.3	34
136	Behavior of two differently radiolabelled 17α-ethinylestradiols continuously applied to a laboratory-scale membrane bioreactor with adapted industrial activated sludge. Water Research, 2007, 41, 4403-4412.	11.3	33
137	An integrative approach combining passive sampling, bioassays, and effectâ€directed analysis to assess the impact of wastewater effluent. Environmental Toxicology and Chemistry, 2018, 37, 2079-2088.	4.3	33
138	Spatiotemporal scales of river-groundwater interaction – The role of local interaction processes and regional groundwater regimes. Science of the Total Environment, 2018, 618, 1224-1243.	8.0	32
139	Exploring micropollutant biotransformation in three freshwater phytoplankton species. Environmental Sciences: Processes and Impacts, 2017, 19, 822-832.	3.5	31
140	Chemical composition of surgical smoke produced by electrocautery, harmonic scalpel and argon beaming – a short study. European Surgery - Acta Chirurgica Austriaca, 2007, 39, 118-121.	0.7	30
141	Assessing Exposure to Transformation Products of Soil-Applied Organic Contaminants in Surface Water: Comparison of Model Predictions and Field Data. Environmental Science & Technology, 2011, 45, 2833-2841.	10.0	29
142	Benchmarking of the quantification approaches for the non-targeted screening of micropollutants and their transformation products in groundwater. Analytical and Bioanalytical Chemistry, 2021, 413, 1549-1559.	3.7	29
143	Paradise lost? Pesticide pollution in a European region with considerable amount of traditional agriculture. Water Research, 2021, 188, 116528.	11.3	28
144	Combined modifier/in situ derivatization effects on supercritical fluid extraction of polycyclic aromatic hydrocarbons from soil. Journal of Chromatography A, 1998, 811, 151-156.	3.7	27

#	Article	IF	CITATIONS
145	Using recirculating flumes and a response surface model to investigate the role of hyporheic exchange and bacterial diversity on micropollutant half-lives. Environmental Sciences: Processes and Impacts, 2019, 21, 2093-2108.	3.5	27
146	Chlorothalonil transformation products in drinking water resources: Widespread and challenging to abate. Water Research, 2020, 183, 116066.	11.3	27
147	GC×GC Quantification of Priority and Emerging Nonpolar Halogenated Micropollutants in All Types of Wastewater Matrices: Analysis Methodology, Chemical Occurrence, and Partitioning. Environmental Science & Technology, 2015, 49, 7914-7925.	10.0	26
148	Passive sampling of organic contaminants across the water-sediment interface of an urban stream. Water Research, 2019, 165, 114966.	11.3	26
149	Sensitive indoor air monitoring of monoterpenes using different adsorbents and thermal desorption gas chromatography with mass-selective detection. Journal of Chromatography A, 2002, 962, 175-181.	3.7	25
150	Removal of endocrine disruptors and cytostatics from effluent by nanofiltration in combination with adsorption on powdered activated carbon. Water Science and Technology, 2008, 58, 1699-1706.	2.5	24
151	Annotating Nontargeted LC-HRMS/MS Data with Two Complementary Tandem Mass Spectral Libraries. Metabolites, 2019, 9, 3.	2.9	24
152	Metabolomic Profiling and Toxicokinetics Modeling to Assess the Effects of the Pharmaceutical Diclofenac in the Aquatic Invertebrate <i>Hyalella azteca</i> . Environmental Science & Technology, 2021, 55, 7920-7929.	10.0	24
153	Development and application of relevance and reliability criteria for water treatment removal efficiencies of chemicals of emerging concern. Water Research, 2019, 161, 274-287.	11.3	23
154	Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: A case study on antifungal azoles. Environment International, 2020, 139, 105708.	10.0	23
155	Metabolism of a nonylphenol isomer by Sphingomonas sp. strain TTNP3. Environmental Chemistry Letters, 2005, 2, 185-189.	16.2	22
156	Detection of methylquinoline transformation products in microcosm experiments and in tar oil contaminated groundwater using LC-NMR. Chemosphere, 2008, 70, 2118-2126.	8.2	22
157	Toxicokinetic and toxicodynamic model for diazinon toxicity—mechanistic explanation of differences in the sensitivity of <i>Daphnia magna</i> and <i>Gammarus pulex</i> . Environmental Toxicology and Chemistry, 2012, 31, 2014-2022.	4.3	22
158	Micropollutant Removal from Wastewater: Facts and Decision-Making Despite Uncertainty. Environmental Science & Technology, 2015, 49, 6374-6375.	10.0	22
159	Tolerance Patterns in Stream Biofilms Link Complex Chemical Pollution to Ecological Impacts. Environmental Science & Technology, 2020, 54, 10745-10753.	10.0	22
160	Occurrence and Fate of Natural Estrogens in Swiss Cattle and Pig Slurry. Journal of Agricultural and Food Chemistry, 2020, 68, 5545-5554.	5.2	22
161	"Is there anybody else out there?" – First Insights from a Suspect Screening for Phytotoxins in Surface Water. Chimia, 2020, 74, 129.	0.6	22
162	Mechanistic Toxicodynamic Model for Receptor-Mediated Toxicity of Diazoxon, the Active Metabolite of Diazinon, in <i>Daphnia magna</i> . Environmental Science & Technology, 2011, 45, 4980-4987.	10.0	21

#	Article	IF	CITATIONS
163	Cytotoxic effects of pentachlorophenol (PCP) and its metabolite tetrachlorohydroquinone (TCHQ) on liver cells are modulated by antioxidants. Cell Biology and Toxicology, 2014, 30, 233-252.	5.3	21
164	Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid–liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. Analytical and Bioanalytical Chemistry, 2019, 411, 3151-3164.	3.7	21
165	Evaluation of reverse osmosis drinking water treatment of riverbank filtrate using bioanalytical tools and non-target screening. Environmental Science: Water Research and Technology, 2020, 6, 103-116.	2.4	21
166	Metabolism of Δ³-Carene by Human Cytochrome P450 Enzymes: Identification and Characterization of Two New Metabolites. Current Drug Metabolism, 2005, 6, 593-601.	1.2	20
167	Sensitive determination of monoterpene alcohols in urine by HPLC–FLD combined with ESI-MS detection after online-solid phase extraction of the monoterpene-coumarincarbamate derivates. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 875, 444-450.	2.3	20
168	Rapid evolutionary loss of metal resistance revealed by hatching decades-old eggs. Evolution; International Journal of Organic Evolution, 2016, 70, 398-407.	2.3	20
169	Polar Organic Micropollutants In The Water Cycle. , 2008, , 103-116.		20
170	Bioaccumulation, Biotransformation, and Synergistic Effects of Binary Fungicide Mixtures in <i>Hyalella azteca</i> and <i>Gammarus pulex</i> : How Different/Similar are the Two Species?. Environmental Science & Technology, 2018, 52, 13491-13500.	10.0	19
171	Exploring the â€~solution space' is key: SOLUTIONS recommends an early-stage assessment of options to protect and restore water quality against chemical pollution. Environmental Sciences Europe, 2019, 31, .	5.5	19
172	Enantiomeric Fractionation during Biotransformation of Chiral Pharmaceuticals in Recirculating Water-Sediment Test Flumes. Environmental Science & amp; Technology, 2020, 54, 7291-7301.	10.0	19
173	Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS. Water Research, 2021, 190, 116745.	11.3	19
174	Study on the cytochrome P450-mediated oxidative metabolism of the terpene alcohol linalool: Indication of biological epoxidation. Xenobiotica, 2007, 37, 604-617.	1.1	19
175	Effect of sample preparation on the in vitro genotoxicity of a light curable glass ionomer cement. Biomaterials, 2003, 24, 611-617.	11.4	18
176	Retrospective HRMS Screening and Dedicated Target Analysis Reveal a Wide Exposure to Pyrrolizidine Alkaloids in Small Streams. Environmental Science & Technology, 2021, 55, 1036-1044.	10.0	18
177	Estimating the spatial distribution of artificial groundwater recharge using multiple tracers. Isotopes in Environmental and Health Studies, 2017, 53, 484-499.	1.0	17
178	Carbon and hydrogen isotope fractionation during anaerobic quinoline degradation. Chemosphere, 2010, 81, 400-407.	8.2	16
179	Nonextractable residue formation of sulfonamide antimicrobials: New insights from soil incubation experiments. Chemosphere, 2014, 107, 366-372.	8.2	16
180	Microvolume trace environmental analysis using peak-focusing online solid-phase extraction–nano-liquid chromatography–high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 1879-1890.	3.7	16

#	Article	IF	CITATIONS
181	Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment. Environmental Toxicology and Chemistry, 2018, 37, 703-714.	4.3	16
182	Comparison of Alternative Methods for Bioaccumulation Assessment: Scope and Limitations of In Vitro Depletion Assays with Rainbow Trout and Bioconcentration Tests in the Freshwater Amphipod <i>Hyalella azteca</i> . Environmental Toxicology and Chemistry, 2020, 39, 1813-1825.	4.3	16
183	Effects of various binary and ternary supercritical phases on the extraction of polycyclic aromatic hydrocarbons from contaminated soils. Journal of Chromatography A, 1998, 816, 201-211.	3.7	15
184	Exploring the Behaviour of Emerging Contaminants in the Water Cycle using the Capabilities of High Resolution Mass Spectrometry. Chimia, 2014, 68, 793.	0.6	15
185	Contribution to the Detection and Identification of Oxidation Metabolites of Nonylphenol in Sphingomonas sp. strain TTNP3. Biodegradation, 2007, 18, 233-245.	3.0	14
186	A mixture of environmental organic contaminants in lake sediments affects hatching from <i>Daphnia</i> resting eggs. Environmental Toxicology and Chemistry, 2015, 34, 338-345.	4.3	14
187	Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Analytical and Bioanalytical Chemistry, 2019, 411, 4683-4700.	3.7	14
188	Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis. Scientific Data, 2021, 8, 223.	5.3	14
189	Microcosms-experiments to assess the potential for natural attenuation of contaminated groundwater. Water Research, 2001, 35, 720-728.	11.3	13
190	EDA-EMERGE: an FP7 initial training network to equip the next generation of young scientists with the skills to address the complexity of environmental contamination with emerging pollutants. Environmental Sciences Europe, 2013, 25, .	5.5	13
191	Comparative Toxicokinetics of Organic Micropollutants in Freshwater Crustaceans. Environmental Science & Technology, 2013, 47, 130712083046004.	10.0	13
192	Let us empower the WFD to prevent risks of chemical pollution in European rivers and lakes. Environmental Sciences Europe, 2019, 31, .	5.5	13
193	Establish data infrastructure to compile and exchange environmental screening data on a European scale. Environmental Sciences Europe, 2019, 31, .	5.5	13
194	Cytochrome P450-catalysed arene-epoxidation of the bioactive tea tree oil ingredient <i>p-</i> cymene: indication for the formation of a reactive allergenic intermediate?. Xenobiotica, 2009, 39, 663-671.	1.1	12
195	In vitro biotransformation of pharmaceuticals and pesticides by trout liver S9 in the presence and absence of carbamazepine. Ecotoxicology and Environmental Safety, 2019, 183, 109513.	6.0	12
196	Comprehensive screening of polar emerging organic contaminants including PFASs and evaluation of the trophic transfer behavior in a freshwater food web. Water Research, 2022, 218, 118514.	11.3	11
197	Identification and dynamic modeling of biomarkers for bacterial uptake and effect of sulfonamide antimicrobials. Environmental Pollution, 2013, 172, 208-215.	7.5	10
198	Biodiversity Drives Micropollutant Biotransformation in Freshwater Phytoplankton Assemblages. Environmental Science & Technology, 2019, 53, 4265-4273.	10.0	10

#	Article	IF	CITATIONS
199	Systematic Underestimation of Pesticide Burden for Invertebrates under Field Conditions: Comparing the Influence of Dietary Uptake and Aquatic Exposure Dynamics. ACS Environmental Au, 2022, 2, 166-175.	7.0	10
200	Sensitive biomonitoring of monoterpene exposure by gas chromatographic–mass spectrometric measurement of hydroxy terpenes in urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 780, 225-230.	2.3	9
201	Microbial Degradation of Tar Oil Compounds under Different Redox Conditions. Clean - Soil, Air, Water, 2003, 31, 204-212.	0.6	9
202	Statistical Approaches for LC-HRMS Data To Characterize, Prioritize, and Identify Transformation Products from Water Treatment Processes. ACS Symposium Series, 2016, , 45-65.	0.5	9
203	Improving Risk Assessment by Predicting the Survival of Field Gammarids Exposed to Dynamic Pesticide Mixtures. Environmental Science & Technology, 2020, 54, 12383-12392.	10.0	9
204	Assessment of the breakthrough of micropollutants in full-scale granular activated carbon adsorbers by rapid small-scale column tests and a novel pilot-scale sampling approach. Environmental Science: Water Research and Technology, 2020, 6, 2742-2751.	2.4	9
205	Aquatic occurrence of phytotoxins in small streams triggered by biogeography, vegetation growth stage, and precipitation. Science of the Total Environment, 2021, 798, 149128.	8.0	9
206	Natural estrogen emissions to subsurface tile drains from experimental grassland fields in Switzerland after application of livestock slurries and free compounds. Science of the Total Environment, 2021, 779, 146351.	8.0	8
207	Synthetic surfactants in Swiss sewage sludges: Analytical challenges, concentrations and per capita loads. Science of the Total Environment, 2022, 808, 151361.	8.0	8
208	Cooxidation of chloro- and methylphenols by Alcaligenes xylosoxidans JH1. World Journal of Microbiology and Biotechnology, 2000, 16, 445-450.	3.6	7
209	Improved sample preparation of biomaterials forin vitrogenotoxicity testing using reference materials. Journal of Biomedical Materials Research Part B, 2002, 61, 83-90.	3.1	7
210	Bioconcentration of Organic Contaminants in Daphnia Resting Eggs. Environmental Science & Technology, 2013, 47, 130909151641005.	10.0	7
211	The Challenge of the Identification and Quantification of Transformation Products in the Aquatic Environment Using High Resolution Mass Spectrometry. Environmental Pollution, 2010, , 195-211.	0.4	7
212	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environmental Sciences Europe, 2019, 31, .	5.5	7
213	Coupling River Concentration Simulations with a Toxicokinetic Model Effectively Predicts the Internal Concentrations of Wastewater-Derived Micropollutants in Field Gammarids. Environmental Science & Technology, 2020, 54, 1710-1719.	10.0	6
214	Natural estrogens in surface waters of a catchment with intensive livestock farming in Switzerland. Environmental Sciences: Processes and Impacts, 2020, 22, 2244-2255.	3.5	6
215	Unusual polar metabolites in the groundwater of a contaminated waste site indicate a new pathway of mononitrotoluene transformation. Chemosphere, 2011, 84, 1650-1657.	8.2	4
	Comment on Environmental quality standards for dialofonas derived under the European Water		

Comment on Environmental quality standards for diclofenac derived under the European Water Framework Directive: 1. Aquatic organisms (Leverett et al. in Environmental Sciences Europe 2021; 33:) Tj ETQq0 0505rgBT /O3verlock 10

#	Article	IF	CITATIONS
217	Groundwater contaminations $\hat{a} \in $ the use of LC-NMR and LC-MS to characterize the scope of polar contaminants. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	2
218	Removal of Selected Organic Micropollutants from WWTP Effluent with Powdered Activated Carbon and Retention by Nanofiltration. , 2009, , 161-178.		2
219	Response to comment of Sierra Rayne on "Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation [Götz et al., Environ Sci Pollut Res (2010) 17:341–354]― Environmental Science and Pollution Research, 2013, 20, 6678-6680.	5.3	Ο
220	Editorial. Journal of Hazardous Materials, 2017, 323, 1.	12.4	0