
Brett L Lucht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4626479/publications.pdf Version: 2024-02-01

Rdett Lluc

#	Article	IF	CITATIONS
1	Investigation of the Electrode-Electrolyte Interphase in Ester-Based Electrolytes in NCM523/Graphite Cells. Journal of the Electrochemical Society, 2022, 169, 030519.	2.9	4
2	Electrolytes Containing Triethyl Phosphate Solubilized Lithium Nitrate for Improved Silicon Anode Performance. Journal of the Electrochemical Society, 2022, 169, 040537.	2.9	8
3	Modification of lithium electrodeposition behavior by variation of electrode distance. Journal of Power Sources, 2022, 532, 231338.	7.8	11
4	Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries. ACS Energy Letters, 2022, 7, 131-139.	17.4	56
5	Modification of solid electrolyte interphase on deposited lithium metal by large separation between the electrodes in ether-based electrolytes. Journal of Solid State Electrochemistry, 2022, 26, 2005-2011.	2.5	3
6	Difluorophosphoric Acid Generation and Crossover Reactions in LiNixCoyMnzO ₂ Cathodes Operating at High Voltage. Journal of the Electrochemical Society, 2022, 169, 060509.	2.9	9
7	Evaluating the Effect of Electrolyte Additive Functionalities on NMC622/Si Cell Performance. Journal of the Electrochemical Society, 2022, 169, 070515.	2.9	6
8	Perspective—Structure and Stability of the Solid Electrolyte Interphase on Silicon Anodes of Lithium-ion Batteries. Journal of the Electrochemical Society, 2021, 168, 030521.	2.9	46
9	Novel Low-Temperature Electrolyte Using Isoxazole as the Main Solvent for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24995-25001.	8.0	38
10	Lithium Bis(trimethylsilyl) Phosphate as a Novel Bifunctional Additive for High-Voltage LiNi _{1.5} Mn _{0.5} O ₄ /Graphite Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22351-22360.	8.0	21
11	Improved Low Temperature Performance of Graphite/Li Cells Using Isoxazole as a Novel Cosolvent in Electrolytes. Journal of the Electrochemical Society, 2021, 168, 070527.	2.9	25
12	Lithium Bis(trimethylsilyl) Phosphate as an Electrolyte Additive to Improve the Low-Temperature Performance for LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ /Graphite Cells. Journal of the Electrochemical Society, 2021, 168, 080538.	2.9	11
13	Lithium Cyano Tris(2,2,2-trifluoroethyl) Borate as a Multifunctional Electrolyte Additive for High-Performance Lithium Metal Batteries. ACS Energy Letters, 2021, 6, 3851-3857.	17.4	37
14	Role of Electrolyte Oxidation and Difluorophosphoric Acid Generation in Crossover and Capacity Fade in Lithium Ion Batteries. ACS Energy Letters, 2021, 6, 3788-3792.	17.4	38
15	Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries. Energy Storage Materials, 2020, 25, 296-304.	18.0	68
16	Perspective—Surface Reactions of Electrolyte with LiNi _x Co _y Mn _z O ₂ Cathodes for Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 100519.	2.9	25
17	LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 33719-33728.	8.0	65
10	Investigation of Mixtures of BF ₃ Carbonates and LiX (X =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 72		
18		2.9	3

the Electrochemical Society, 2020, 167, 080507.

#	Article	IF	CITATIONS
19	Preparation of BF ₃ Carbonates and their Electrochemical Investigation as Additives in Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 060514.	2.9	6
20	Fluorinated Acetic Anhydrides as Electrolyte Additives to Improve Cycling Performance of the Lithium Metal Anode. Journal of the Electrochemical Society, 2020, 167, 110506.	2.9	8
21	Minimized Metal Dissolution from High-Energy Nickel Cobalt Manganese Oxide Cathodes with Al ₂ O ₃ Coating and Its Effects on Electrolyte Decomposition on Graphite Anodes. Journal of the Electrochemical Society, 2019, 166, A2721-A2726.	2.9	31
22	Using Triethyl Phosphate to Increase the Solubility of LiNO ₃ in Carbonate Electrolytes for Improving the Performance of the Lithium Metal Anode. Journal of the Electrochemical Society, 2019, 166, A2523-A2527.	2.9	60
23	Increased Cycling Performance of Li-Ion Batteries by Phosphoric Acid Modified LiNi _{0.5} Mn _{1.5} O ₄ Cathodes in the Presence of LiBOB. International Journal of Electrochemistry, 2019, 2019, 1-7.	2.4	17
24	Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule, 2019, 3, 2322-2333.	24.0	493
25	Understanding Electrolyte Decomposition of Graphite/NCM811 Cells at Elevated Operating Voltage. Journal of the Electrochemical Society, 2019, 166, A1853-A1859.	2.9	83
26	The Impact of CO ₂ Evolved from VC and FEC during Formation of Graphite Anodes in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2035-A2047.	2.9	74
27	Role of binders in solid electrolyte interphase formation in lithium ion batteries studied with hard X-ray photoelectron spectroscopy. Journal of Materials Research, 2019, 34, 97-106.	2.6	16
28	Synergistic Performance of Lithium Difluoro(oxalato)borate and Fluoroethylene Carbonate in Carbonate Electrolytes for Lithium Metal Anodes. Journal of the Electrochemical Society, 2019, 166, A5117-A5121.	2.9	42
29	Casein from Bovine Milk as a Binder for Silicon Based Electrodes. Journal of the Electrochemical Society, 2019, 166, A4115-A4121.	2.9	3
30	Surfactant assisted, one-step synthesis of Fe3O4 nanospheres and further modified Fe3O4/C with excellent lithium storage performance. Journal of Electroanalytical Chemistry, 2018, 810, 248-254.	3.8	27
31	Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF ₆ , LiBF ₄ , LiDFOB, LiBOB, and LiTFSI. Journal of the Electrochemical Society, 2018, 165, A251-A255.	2.9	187
32	X-Ray-Induced Changes to Passivation Layers of Lithium-Ion Battery Electrodes. Journal of Spectroscopy, 2018, 2018, 1-7.	1.3	3
33	Effect of Electrolyte Additives on Li ₄ Ti ₅ O ₁₂ Cycling Performance and Gas Evolution. Journal of the Electrochemical Society, 2018, 165, A3925-A3931.	2.9	15
34	Investigation of Gas Evolution from Li ₄ Ti ₅ O ₁₂ Anode for Lithium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A3108-A3113.	2.9	10
35	Investigation of 2, 3-epoxypropyl methanesulfonate (OMS) as an electrolyte additive for lithium ion batteries. Electrochimica Acta, 2018, 281, 405-409.	5.2	10
36	Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes. ACS Applied Energy Materials, 2018, 1, 3057-3062.	5.1	95

#	Article	IF	CITATIONS
37	Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy and Environmental Science, 2018, 11, 2600-2608.	30.8	292
38	Development of Electrolytes for Si-Graphite Composite Electrodes. Journal of the Electrochemical Society, 2018, 165, A2154-A2161.	2.9	31
39	Citric Acid Based Pre-SEI for Improvement of Silicon Electrodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1991-A1996.	2.9	23
40	Lithium Bis(2,2,2-trifluoroethyl)phosphate Li[O ₂ P(OCH ₂ CF ₃) ₂]: A High Voltage Additive for LNMO/Graphite Cells. Journal of the Electrochemical Society, 2018, 165, A2569-A2576.	2.9	33
41	In Situ Measurement of the Plane-Strain Modulus of the Solid Electrolyte Interphase on Lithium-Metal Anodes in Ionic Liquid Electrolytes. Nano Letters, 2018, 18, 5752-5759.	9.1	43
42	Investigation of the solid electrolyte interphase on hard carbon electrode for sodium ion batteries. Journal of Electroanalytical Chemistry, 2017, 799, 181-186.	3.8	65
43	Effect of Lithium Borate Additives on Cathode Film Formation in LiNi _{0.5} Mn _{1.5} O ₄ /Li Cells. ACS Applied Materials & Interfaces, 2017, 9, 20467-20475.	8.0	65
44	Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries. Chemistry of Materials, 2017, 29, 3237-3245.	6.7	109
45	A Facile Synthesis of ZnCo2O4 Nanocluster Particles and the Performance as Anode Materials for Lithium Ion Batteries. Nano-Micro Letters, 2017, 9, 20.	27.0	38
46	Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent. Langmuir, 2017, 33, 9254-9261.	3.5	59
47	Spectroscopic and Density Functional Theory Characterization of Common Lithium Salt Solvates in Carbonate Electrolytes for Lithium Batteries. Journal of Physical Chemistry C, 2017, 121, 2135-2148.	3.1	114
48	Improving the Performance at Elevated Temperature of High Voltage Graphite/LiNi _{0.5} Mn _{1.5} O ₄ Cells with Added Lithium Catechol Dimethyl Borate. Journal of the Electrochemical Society, 2017, 164, A128-A136.	2.9	19
49	Decomposition Reactions of Anode Solid Electrolyte Interphase (SEI) Components with LiPF ₆ . Journal of Physical Chemistry C, 2017, 121, 22733-22738.	3.1	175
50	Lithium Salt Effects on Silicon Electrode Performance and Solid Electrolyte Interphase (SEI) Structure, Role of Solution Structure on SEI Formation. Journal of the Electrochemical Society, 2017, 164, A2082-A2088.	2.9	38
51	Investigation of the Lithium Solid Electrolyte Interphase in Vinylene Carbonate Electrolytes Using Cu LiFePO ₄ Cells. Journal of the Electrochemical Society, 2017, 164, A2186-A2189.	2.9	29
52	Systematic Investigation of Alkali Metal Ions as Additives for Graphite Anode in Propylene Carbonate Based Electrolytes. Electrochimica Acta, 2017, 250, 285-291.	5.2	13
53	Influence of the Oil on the Structure and Electrochemical Performance of Emulsion-Templated Tin/Carbon Anodes for Lithium Ion Batteries. Langmuir, 2017, 33, 8869-8876.	3.5	1
54	Improving the Performance of Graphite/LiNi _{0.5} Mn _{1.5} O ₄ Cells with Added N,N-dimethylformamide Sulfur Trioxide Complex. Journal of the Electrochemical Society, 2017, 164, A3182-A3190.	2.9	8

#	Article	IF	CITATIONS
55	Towards reducing carbon content in silicon/carbon anodes for lithium ion batteries. Carbon, 2017, 112, 72-78.	10.3	30
56	Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes. Journal of Materials Science, 2017, 52, 3613-3621.	3.7	23
57	In Situ Measurement of Solid Electrolyte Interphase Evolution on Silicon Anodes Using Atomic Force Microscopy. Advanced Energy Materials, 2016, 6, 1600099.	19.5	81
58	Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation. ACS Applied Materials & Interfaces, 2016, 8, 12211-12220.	8.0	204
59	Development of Lithium Dimethyl Phosphate as an Electrolyte Additive for Lithium Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A1369-A1372.	2.9	14
60	Cycling performance and surface analysis of Lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite. Electrochimica Acta, 2016, 217, 269-273.	5.2	24
61	Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chemistry of Materials, 2016, 28, 8149-8159.	6.7	339
62	Development of novel lithium borate additives for designed surface modification of high voltage LiNi _{0.5} Mn _{1.5} O ₄ cathodes. Energy and Environmental Science, 2016, 9, 1308-1319.	30.8	159
63	Improved cycling performance of Si nanoparticle anodes via incorporation of methylene ethylene carbonate. Electrochemistry Communications, 2016, 66, 71-74.	4.7	12
64	Flame-retardant co-solvent incorporation into lithium-ion coin cells with Si-nanoparticle anodes. Journal of Applied Electrochemistry, 2015, 45, 873-880.	2.9	8
65	Role of Mixed Solvation and Ion Pairing in the Solution Structure of Lithium Ion Battery Electrolytes. Journal of Physical Chemistry C, 2015, 119, 14038-14046.	3.1	224
66	Carbonate Free Electrolyte for Lithium Ion Batteries Containing Î ³ -Butyrolactone and Methyl Butyrate. Journal of the Electrochemical Society, 2015, 162, A928-A934.	2.9	39
67	Role of 1,3-Propane Sultone and Vinylene Carbonate in Solid Electrolyte Interface Formation and Gas Generation. Journal of Physical Chemistry C, 2015, 119, 11337-11348.	3.1	162
68	Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A7008-A7014.	2.9	157
69	Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2325-A2330.	2.9	120
70	Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20004-20011.	8.0	118
71	Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery. Journal of the Electrochemical Society, 2015, 162, A7091-A7095.	2.9	47
72	All-Aqueous Directed Assembly Strategy for Forming High-Capacity, Stable Silicon/Carbon Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 21391-21397.	8.0	16

#	Article	IF	CITATIONS
73	Flame Retardant Co-Solvent Incorporation into Lithium-Ion Coin Cells with Thin-Film Si Anodes. Journal of the Electrochemical Society, 2014, 161, A176-A182.	2.9	13
74	Generation of Cathode Passivation Films via Oxidation of Lithium Bis(oxalato) Borate on High Voltage Spinel (LiNi _{0.5} Mn _{1.5} O ₄). Journal of Physical Chemistry C, 2014, 118, 7363-7368.	3.1	118
75	Stability of Inactive Components of Cathode Laminates for Lithium Ion Batteries at High Potential. Journal of the Electrochemical Society, 2014, 161, A576-A582.	2.9	24
76	Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1933-A1938.	2.9	225
77	Surface phenomena of high energy Li(Ni1/3Co1/3Mn1/3)O2/graphite cells at high temperature and high cutoff voltages. Journal of Power Sources, 2014, 269, 920-926.	7.8	81
78	High Capacity, Stable Silicon/Carbon Anodes for Lithium-Ion Batteries Prepared Using Emulsion-Templated Directed Assembly. ACS Applied Materials & Interfaces, 2014, 6, 4678-4683.	8.0	29
79	Analysis of integrated electrode stacks for lithium ion batteries. Journal of Power Sources, 2014, 251, 476-479.	7.8	3
80	Surface study of electrodes after long-term cycling inÂLi1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. Journal of Power Sources, 2014, 248, 1077-1084.	7.8	40
81	Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1001-A1006.	2.9	197
82	Performance of lithium tetrafluorooxalatophosphate in methyl butyrate electrolytes. Journal of Applied Electrochemistry, 2013, 43, 497-505.	2.9	10
83	Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF ₆ in Propylene Carbonate. Journal of Physical Chemistry C, 2013, 117, 25381-25389.	3.1	228
84	Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 13403-13412.	3.1	441
85	Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 1257-1267.	3.1	419
86	Failure Mechanism of Graphite/LiNi _{0.5} Mn _{1.5} O ₄ Cells at High Voltage and Elevated Temperature. Journal of the Electrochemical Society, 2013, 160, A3138-A3143.	2.9	158
87	Improving the Performance of Graphite/ LiNi _{0.5} Mn _{1.5} O ₄ Cells at High Voltage and Elevated Temperature with Added Lithium Bis(oxalato) Borate (LiBOB). Journal of the Electrochemical Society, 2013, 160, A2005-A2013.	2.9	110
88	Electrochemical Analysis of Li-Ion Cells Containing Triphenyl Phosphate. Journal of the Electrochemical Society, 2012, 159, A2100-A2108.	2.9	39
89	Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes. Journal of the Electrochemical Society, 2012, 159, A642-A646.	2.9	264
90	Improved Performance of LiNi _{0.5} Mn _{1.5} O ₄ Cathodes with Electrolytes Containing Dimethylmethylphosphonate (DMMP). Journal of the Electrochemical Society, 2012, 159, A2130-A2134.	2.9	65

Brett L Lucht

#	Article	IF	CITATIONS
91	The Effect of Additives upon the Performance of MCMB/LiNi _x Co _{1â^x} O ₂ Li-Ion Cells Containing Methyl Butyrate-Based Wide Operating Temperature Range Electrolytes. Journal of the Electrochemical Society, 2012, 159, A739-A751.	2.9	98
92	Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries. Journal of Power Sources, 2012, 215, 145-151.	7.8	153
93	Performance of lithium tetrafluorooxalatophosphate (LiFOP) electrolyte with propylene carbonate (PC). Journal of Power Sources, 2012, 205, 439-448.	7.8	15
94	Methylene ethylene carbonate: Novel additive to improve the high temperature performance of lithium ion batteries. Journal of Power Sources, 2012, 208, 67-73.	7.8	45
95	Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis. Tetrahedron Letters, 2011, 52, 5891-5893.	1.4	64
96	Effects of different electrode materials on the performance of lithium tetrafluorooxalatophosphate (LiFOP) electrolyte. Journal of Power Sources, 2011, 196, 8073-8084.	7.8	27
97	Inorganic additives for passivation of high voltage cathode materials. Journal of Power Sources, 2011, 196, 2251-2254.	7.8	152
98	Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. Journal of Power Sources, 2011, 196, 6794-6801.	7.8	188
99	Investigation of the Disproportionation Reactions and Equilibrium of Lithium Difluoro(Oxalato) Borate (LiDFOB). Electrochemical and Solid-State Letters, 2011, 14, A161.	2.2	31
100	Investigation of the Solid Electrolyte Interphase on MCMB and NG Electrodes in Lithium Tetrafluorooxalatophosphate [LiPF4C2O4] Based Electrolyte. Journal of the Electrochemical Society, 2011, 158, A1202.	2.9	7
101	Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy. Journal of Molecular Liquids, 2010, 154, 131-133.	4.9	113
102	Experimental and theoretical investigations on 4,5-dimethyl-[1,3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries. Electrochimica Acta, 2010, 55, 6743-6748.	5.2	27
103	Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis. Tetrahedron Letters, 2010, 51, 2356-2358.	1.4	140
104	Twoâ€step thermochromism in poly(3â€docosoxyâ€4â€methylthiophene): Mechanistic similarity to poly(3â€docosylthiophene). Journal of Polymer Science Part A, 2010, 48, 4370-4373.	2.3	11
105	Nonflammable Electrolytes for Lithium-Ion Batteries Containing Dimethyl Methylphosphonate. Journal of the Electrochemical Society, 2010, 157, A1113.	2.9	68
106	Investigation of Lithium Tetrafluorooxalatophosphate [LiPF[sub 4](C[sub 2]O[sub 4])] as a Lithium-Ion Battery Electrolyte for Elevated Temperature Performance. Journal of the Electrochemical Society, 2010, 157, A115.	2.9	51
107	Electrolyte Reactions with the Surface of High Voltage LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Cathodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2010, 13, A95.	2.2	455
108	Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries. Journal of Power Sources, 2009, 193, 804-809.	7.8	117

#	Article	IF	CITATIONS
109	Effect of combinations of additives on the performance of lithium ion batteries. Journal of Power Sources, 2009, 194, 1053-1060.	7.8	41
110	Investigation of Lithium Tetrafluorooxalatophosphate as a Lithium-Ion Battery Electrolyte. Electrochemical and Solid-State Letters, 2009, 12, A155.	2.2	28
111	Examining the Solid Electrolyte Interphase on Binder-Free Graphite Electrodes. Journal of the Electrochemical Society, 2009, 156, A318.	2.9	139
112	Inhibition of Electrolyte Oxidation in Lithium Ion Batteries with Electrolyte Additives. Electrochemical and Solid-State Letters, 2009, 12, A229.	2.2	71
113	Surface reactions and performance of non-aqueous electrolytes with lithium metal anodes. Journal of Power Sources, 2008, 185, 1359-1366.	7.8	33
114	Mesophase Formation in Regioregular Poly(3-alkylthiophene)s Containing Long Chain Alkyl Groups. Macromolecules, 2008, 41, 7115-7121.	4.8	12
115	Thermal Reactions of LiPF[sub 6] with Added LiBOB. Electrochemical and Solid-State Letters, 2007, 10, A241.	2.2	59
116	Inhibition of the Detrimental Effects of Water Impurities in Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2007, 10, A115.	2.2	34
117	Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries. Journal of Power Sources, 2007, 168, 258-264.	7.8	54
118	Lithium-Ion Batteries: Thermal Reactions of Electrolyte with the Surface of Metal Oxide Cathode Particles. Journal of the Electrochemical Society, 2006, 153, A1617.	2.9	126
119	Effect of residual monomer on the spectroscopic properties of polythiophenes. Chemical Communications, 2006, , 2121.	4.1	4
120	Thermal reactions of mesocarbon microbead (MCMB) particles in LiPF6-based electrolyte. Journal of Power Sources, 2006, 162, 1282-1288.	7.8	49
121	Poly-p-phenylene Phosphine/Polyaniline Alternating Copolymers:Â Electronic Delocalization through Phosphorus. Journal of the American Chemical Society, 2005, 127, 5586-5595.	13.7	72
122	Additives for Stabilizing LiPF[sub 6]-Based Electrolytes Against Thermal Decomposition. Journal of the Electrochemical Society, 2005, 152, A1361.	2.9	103
123	Koopmans-Based Analysis of the Optical Spectra ofp-Phenylene-Bridged Intervalence Radical Ions. Journal of Organic Chemistry, 2005, 70, 9326-9333.	3.2	27
124	Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2005, 152, A2327.	2.9	624
125	Suppression of Toxic Compounds Produced in the Decomposition of Lithium-Ion Battery Electrolytes. Electrochemical and Solid-State Letters, 2004, 7, A194.	2.2	142
126	Regiocontrolled synthesis of poly(3-alkylthiophene)s by Grignard metathesis. Journal of Polymer Science Part A, 2004, 42, 5538-5547.	2.3	22

#	Article	IF	CITATIONS
127	Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes. Journal of Power Sources, 2004, 135, 291-296.	7.8	66
128	Observation of Two-Step Thermochromism in Poly(3-docosylthiophene):Â DSC and Reflection Spectroscopy. Macromolecules, 2004, 37, 5415-5422.	4.8	20
129	Thermal stability of lithium-ion battery electrolytes. Journal of Power Sources, 2003, 119-121, 805-810.	7.8	263
130	Transition metal mediated routes to poly(arylphosphine)s: investigation of novel phosphorus containing conjugated polymers. Journal of Organometallic Chemistry, 2002, 653, 167-176.	1.8	54
131	Synthesis and characterization of poly(p-phenylenephosphine)s. Chemical Communications, 2000, , 2097-2098.	4.1	57
132	Poly(2,5-diphenylgermole):  Incorporation of a Germole Ring into a Conjugated Polymer. Organometallics, 2000, 19, 3469-3475.	2.3	64
133	Lithium Hexamethyldisilazide:  A View of Lithium Ion Solvation through a Glass-Bottom Boat. Accounts of Chemical Research, 1999, 32, 1035-1042.	15.6	169
134	Solution Structures of Lithium Monoalkylamides (RNHLi). Organometallics, 1999, 18, 2981-2987.	2.3	44
135	A Zirconocene-Coupling Route to Substituted Poly(p-phenylenedienylene)s:Â Band Gap Tuning via Conformational Control. Journal of the American Chemical Society, 1998, 120, 4354-4365.	13.7	73
136	Lithium Diisopropylamide Solvated by Monodentate and Bidentate Ligands:Â Solution Structures and Ligand Binding Constants. Journal of the American Chemical Society, 1997, 119, 5567-5572.	13.7	88
137	Lithium 2,2,6,6-Tetramethylpiperidide and Lithium 2,2,4,6,6-Pentamethylpiperidide:Â Influence of TMEDA and Related Chelating Ligands on the Solution Structures. Characterization of Higher Cyclic Oligomers, Cyclic Dimers, Open Dimers, and Monomers. Journal of Organic Chemistry, 1997, 62, 5748-5754.	3.2	51
138	Polydentate Amine and Ether Solvates of Lithium Hexamethyldisilazide (LiHMDS):Â Relationship of Ligand Structure, Relative Solvation Energy, and Aggregation State. Journal of the American Chemical Society, 1996, 118, 10707-10718.	13.7	83
139	Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide (LiHMDS). Journal of the American Chemical Society, 1996, 118, 2217-2225.	13.7	91
140	Solvation of Lithium Hexamethyldisilazide by N,N-Dimethylethylenediamine:  Effects of Chelation on Competitive Solvation and Mixed Aggregation. Journal of the American Chemical Society, 1996, 118, 3529-3530.	13.7	46
141	Ethereal Solvation of Lithium Hexamethyldisilazide: Unexpected Relationships of Solvation Number, Solvation Energy, and Aggregation State. Journal of the American Chemical Society, 1995, 117, 9863-9874.	13.7	113
142	Structure of Lithium 2,2,6,6-Tetramethylpiperidine (LiTMP) and Lithium 2,2,4,6,6-Pentamethylpiperidide (LiPMP) in Hydrocarbon Solution: Assignment of Cyclic Trimer and Tetramer Conformational Isomers. Journal of the American Chemical Society, 1994, 116, 7949-7950.	13.7	39
143	6Li/15N NMR-Based Solution Structural Determination of Et2O- and TMEDA-Solvated Lithiophenylacetonitrile and a LiHMDS Mixed Aggregate. Journal of the American Chemical Society, 1994, 116, 11602-11603.	13.7	56
144	Structure of Lithium Hexamethyldisilazide (LiHMDS): Spectroscopic Study of Ethereal Solvation in the Slow-Exchange Limit. Journal of the American Chemical Society, 1994, 116, 6009-6010.	13.7	75