
Xiao-Fei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4626431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research, 2017, 4, 17023.	2.9	216
2	The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. Journal of Plant Physiology, 2012, 169, 710-717.	1.6	198
3	An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1â€mediated degradation. Plant Biotechnology Journal, 2020, 18, 337-353.	4.1	198
4	EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 Act in a Regulatory Loop That Synergistically Modulates Ethylene Biosynthesis and Anthocyanin Accumulation. Plant Physiology, 2018, 178, 808-823.	2.3	191
5	Apple bZIP transcription factor MdbZIP44 regulates abscisic acidâ€promoted anthocyanin accumulation. Plant, Cell and Environment, 2018, 41, 2678-2692.	2.8	189
6	The ERF transcription factor MdERF38 promotes drought stressâ€induced anthocyanin biosynthesis in apple. Plant Journal, 2020, 101, 573-589.	2.8	181
7	R2R3â€ <scp>MYB</scp> transcription factor Md <scp>MYB</scp> 23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant Journal, 2018, 96, 562-577.	2.8	178
8	Md <scp>WRKY</scp> 40 promotes woundingâ€induced anthocyanin biosynthesis in association with Md <scp>MYB</scp> 1 and undergoes Md <scp>BT</scp> 2â€mediated degradation. New Phytologist, 2019, 224, 380-395.	3.5	121
9	The Nitrate-Responsive Protein MdBT2 Regulates Anthocyanin Biosynthesis by Interacting with the MdMYB1 Transcription Factor. Plant Physiology, 2018, 178, 890-906.	2.3	102
10	Md <scp>BBX</scp> 22 regulates <scp>UV</scp> â€Bâ€induced anthocyanin biosynthesis through regulating the function of Md <scp>HY</scp> 5 and is targeted by Md <scp>BT</scp> 2 for 26S proteasomeâ€mediated degradation. Plant Biotechnology Journal, 2019, 17, 2231-2233.	4.1	102
11	MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. Journal of Experimental Botany, 2017, 68, 2977-2990.	2.4	101
12	The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiology and Biochemistry, 2016, 108, 24-31.	2.8	99
13	An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway. Journal of Plant Physiology, 2018, 221, 74-80.	1.6	93
14	Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis. Plant Physiology, 2016, 172, 1973-1988.	2.3	92
15	Apple Bâ€box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZâ€BBX37â€ICE1â€CBF pathway and undergoes MIEL1â€mediated ubiquitination and degradation. New Phytologist, 2021, 229, 2707-2729.	3.5	88
16	An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. Physiologia Plantarum, 2018, 164, 279-289.	2.6	80
17	Mdb <scp>HLH</scp> 93, an apple activator regulating leaf senescence, is regulated by <scp>ABA</scp> and Md <scp>BT</scp> 2 in antagonistic ways. New Phytologist, 2019, 222, 735-751.	3.5	76
18	An Apple B-Box Protein MdBBX37 Modulates Anthocyanin Biosynthesis and Hypocotyl Elongation Synergistically with MdMYBs and MdHY5. Plant and Cell Physiology, 2020, 61, 130-143.	1.5	70

XIAO-FEI WANG

#	Article	IF	CITATIONS
19	ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. Journal of Experimental Botany, 2021, 72, 1460-1472.	2.4	68
20	Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple. Journal of Experimental Botany, 2020, 71, 3094-3109.	2.4	64
21	MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple. Journal of Plant Physiology, 2017, 218, 275-281.	1.6	56
22	Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1–TRB1–MYB9 complex. Plant Journal, 2021, 106, 1414-1430.	2.8	49
23	Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant, 2021, 14, 1454-1471.	3.9	47
24	Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein. Plant and Cell Physiology, 2017, 58, 1953-1962.	1.5	46
25	Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response. Frontiers in Plant Science, 2016, 7, 1685.	1.7	41
26	Cloning and elucidation of the functional role of apple MdLBD13 in anthocyanin biosynthesis and nitrate assimilation. Plant Cell, Tissue and Organ Culture, 2017, 130, 47-59.	1.2	36
27	BTB protein MdBT2 inhibits anthocyanin and proanthocyanidin biosynthesis by triggering MdMYB9 degradation in apple. Tree Physiology, 2018, 38, 1578-1587.	1.4	34
28	BTB-TAZ Domain Protein MdBT2 Modulates Malate Accumulation and Vacuolar Acidification in Response to Nitrate. Plant Physiology, 2020, 183, 750-764.	2.3	33
29	MdABI5 works with its interaction partners to regulate abscisic acidâ€mediated leaf senescence in apple. Plant Journal, 2021, 105, 1566-1581.	2.8	32
30	The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple. Plant Physiology, 2022, 189, 2044-2060.	2.3	32
31	Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Science, 2018, 276, 181-188.	1.7	30
32	Apple <scp>BT2</scp> protein negatively regulates jasmonic acidâ€ŧriggered leaf senescence by modulating the stability of <scp>MYC2</scp> and <scp>JAZ2</scp> . Plant, Cell and Environment, 2021, 44, 216-233.	2.8	30
33	Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple. Journal of Experimental Botany, 2022, 73, 980-997.	2.4	30
34	BTB/TAZ protein MdBT2 integrates multiple hormonal and environmental signals to regulate anthocyanin biosynthesis in apple. Journal of Integrative Plant Biology, 2020, 62, 1643-1646.	4.1	29
35	Apple RING finger E3 ubiquitin ligase MdMIEL1 negatively regulates salt and oxidative stresses tolerance. Journal of Plant Biology, 2017, 60, 137-145.	0.9	26
36	BTB-BACK-TAZ domain protein MdBT2-mediated MdMYB73 ubiquitination negatively regulates malate accumulation and vacuolar acidification in apple. Horticulture Research, 2020, 7, 151.	2.9	25

XIAO-FEI WANG

#	Article	IF	CITATIONS
37	The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation. Horticulture Research, 2021, 8, 22.	2.9	25
38	MdMYB58 Modulates Fe Homeostasis by Directly Binding to the MdMATE43 Promoter in Plants. Plant and Cell Physiology, 2018, 59, 2476-2489.	1.5	23
39	Cloning and functional identification of a strigolactone receptor gene MdD14 in apple. Plant Cell, Tissue and Organ Culture, 2020, 140, 197-208.	1.2	22
40	Low nitrate alleviates iron deficiency by regulating iron homeostasis in apple. Plant, Cell and Environment, 2021, 44, 1869-1884.	2.8	22
41	Ectopic expression of an apple cytochrome P450 gene MdCYPM1 negatively regulates plant photomorphogenesis and stress response in Arabidopsis. Biochemical and Biophysical Research Communications, 2017, 483, 1-9.	1.0	19
42	Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. Planta, 2021, 253, 46.	1.6	19
43	NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of TRYPTOPHAN AMINOTRANSFERASE RELATED 2. Plant Science, 2021, 303, 110771.	1.7	17
44	The MdABI5 transcription factor interacts with the MdNRT1.5/MdNPF7.3 promoter to fine-tune nitrate transport from roots to shoots in apple. Horticulture Research, 2021, 8, 236.	2.9	16
45	Functional identification of apple MdMYB2 gene in phosphate-starvation response. Journal of Plant Physiology, 2020, 244, 153089.	1.6	15
46	Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. Plant Physiology, 2022, 188, 2342-2363.	2.3	15
47	The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple. Plant Physiology, 2022, 189, 1005-1020.	2.3	13
48	Genome-wide analysis and identification of the SMXL gene family in apple (Malus × domestica). Tree Genetics and Genomes, 2018, 14, 1.	0.6	12
49	The apple MdCOP1-interacting protein 1 negatively regulates hypocotyl elongation and anthocyanin biosynthesis. BMC Plant Biology, 2021, 21, 15.	1.6	11
50	The apple BTB protein MdBT2 positively regulates MdCOP1 abundance to repress anthocyanin biosynthesis. Plant Physiology, 2022, 190, 305-318.	2.3	10
51	The apple RING-H2 protein MdCIP8 regulates anthocyanin accumulation and hypocotyl elongation by interacting with MdCOP1. Plant Science, 2020, 301, 110665.	1.7	9
52	Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Science, 2022, 316, 111158.	1.7	9
53	Phosphate regulates malate/citrate-mediated iron uptake and transport in apple. Plant Science, 2020, 297, 110526.	1.7	8
54	MdMYB10 affects nitrogen uptake and reallocation by regulating the nitrate transporter MdNRT2.4-1 in red-fleshed apple. Horticulture Research, 2022, 9, .	2.9	7

XIAO-FEI WANG

#	Article	IF	CITATIONS
55	Interaction of BTB-TAZ protein MdBT2 and DELLA protein MdRGL3a regulates nitrate-mediated plant growth. Plant Physiology, 2021, 186, 750-766.	2.3	6
56	MdBZR1 regulates ABA response by modulating the expression of MdABI5 in apple. Plant Cell Reports, 2021, 40, 1127-1139.	2.8	4
57	Overexpression of MdPHR1 Enhanced Tolerance to Phosphorus Deficiency by Increasing MdPAP10 Transcription in Apple (Malus ×  Domestica). Journal of Plant Growth Regulation, 2021, 40, 1753-1763.	. 2.8	3
58	Nitrateâ€inducible MdBT2 acts as a restriction factor to limit apple necrotic mosaic virus genome replication in <i>Malus domestica</i> . Molecular Plant Pathology, 2022, 23, 383-399.	2.0	3
59	Molecular cloning and functional characterization of the CEP RECEPTOR 1 gene MdCEPR1 of Apple (Malus × domestica). Plant Cell, Tissue and Organ Culture, 2020, 140, 539-550.	1.2	2
60	MdARF8: An Auxin Response Factor Involved in Jasmonate Signaling Pathway in Malus domestica. Journal of Plant Growth Regulation, 2023, 42, 1738-1749.	2.8	2
61	Genome-wide Identification and Comparative Analysis of Genes Encoding AAPs in Apple (Malus ×) Tj ETQq1 1 0.	784314 r 1.0	gBT /Overlo