
Yusuke Ogura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4626384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectral and temporal optical signal generation using randomly distributed quantum dots. Optical Review, 2020, 27, 264-269.	1.2	5
2	Nanoscale Optical Logic Circuits by Single-Step FRET. IEEE Photonics Journal, 2020, 12, 1-12.	1.0	3
3	Improvement of signal-to-noise ratio in super resolution imaging using subdiffraction limited spots by additional digital signal processing. , 2020, , .		Ο
4	Generation of a subdiffraction-limit light sheet with micrometer-order thickness using a computer-generated hologram. Optical Review, 2019, 26, 452-459.	1.2	0
5	Optical decomposition of DNA gel and modification of object mobility on micrometre scale. Scientific Reports, 2019, 9, 19858.	1.6	Ο
6	Resolution enhancement in nonlinear interferenceless COACH with point response of subdiffraction limit patterns. Optics Express, 2019, 27, 391.	1.7	29
7	Holographic femtosecond laser processing with sub-diffraction-limit focusing. , 2019, , .		0
8	Spatial phase shaping of ultrashort laser pulses to overcome the diffraction limit. OSA Continuum, 2019, 2, 3240.	1.8	3
9	Microscale optical cryptography using a subdiffraction-limit optical key. Japanese Journal of Applied Physics, 2018, 57, 040309.	0.8	1
10	Photothermal fabrication of microscale patterned DNA hydrogels. Royal Society Open Science, 2018, 5, 171779.	1.1	13
11	Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images. Optical Review, 2018, 25, 384-390.	1.2	0
12	Photonically driven DNA nanomachine with hybrid functions towards cell measurement. , 2018, , .		0
13	A molecular-sized optical logic circuit for digital modulation of a fluorescence signal. , 2018, , .		0
14	Lateral spatial resolution improvement in laser scanning fluorescence microscopy using a subdiffraction limit optical spot. , 2018, , .		0
15	Bayesian based fluorescence coded imaging using quantum dots. , 2017, , .		0
16	Fluorescence encoded super resolution imaging based on a location estimation algorithm for high-density fluorescence probes. Optical Review, 2017, 24, 212-218.	1.2	2
17	Proximity amplitude and phase control for beam reduction using computer-generated hologram. , 2017, , .		0

#	Article	IF	CITATIONS
19	Optically controlled release of DNA based on nonradiative relaxation process of quenchers. Biomedical Optics Express, 2016, 7, 2142.	1.5	4
20	Multiplexed fluorescence readout using time responses of color coded signals for biomolecular detection. Biomedical Optics Express, 2016, 7, 5284.	1.5	2
21	Diffractive fan-out elements for wavelength-multiplexing subdiffraction-limit spot generation in three dimensions. Applied Optics, 2016, 55, 6371.	2.1	8
22	Diffractive optical elements for multi-dimensional subdiffraction-limit spot generation: design, demonstration, and characterization. Proceedings of SPIE, 2016, , .	0.8	0
23	Optically controllable molecular logic circuits. Applied Physics Letters, 2015, 107, .	1.5	9
24	Generation of multiple sub-diffraction-limit spots in 3D space with propagating light. , 2015, , .		0
25	Nanoscale energy-route selector consisting of multiple photo-switchable fluorescence-resonance-energy-transfer structures on DNA. Optical Review, 2015, 22, 316-321.	1.2	9
26	Fluorescence amplification based on DNA structural changes for enzyme-free detection of microRNA. , 2014, , .		0
27	Amplification and modulation of fluorescent signals by using hybridization chain reactions for multiplexed sensing of biomolecules in a one-pot. Proceedings of SPIE, 2014, , .	0.8	Ο
28	Single-shot phase imaging with a coded aperture. Optics Letters, 2014, 39, 6466.	1.7	87
29	Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes. Biomedical Optics Express, 2014, 5, 2082.	1.5	9
30	Design and demonstration of fan-out elements generating an array of subdiffraction spots. Optics Express, 2014, 22, 25196.	1.7	26
31	Amplification and encoding of biomolecular signals with designed reactions of DNA. , 2013, , .		2
32	A Nanoscale Set–Reset Flip-Flop in Fluorescence Resonance Energy Transfer-Based Circuits. Applied Physics Express, 2013, 6, 015201.	1.1	11
33	Optical Manipulation of Liquid-based Microreactors in Optofluidic DNA Computation. , 2013, , .		0
34	Reusable molecular sensor based on photonic activation control of DNA probes. Biomedical Optics Express, 2012, 3, 920.	1.5	3
35	Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold. Applied Physics Letters, 2012, 101, 233703.	1.5	36
36	Optofluidic DNA computation based on optically manipulated microdroplets. Microfluidics and Nanofluidics, 2012, 13, 1-7.	1.0	7

2

#	Article	IF	Citations
37	Large-area manipulation of microdroplets by holographic optical tweezers based on a hybrid diffractive system. Applied Optics, 2011, 50, H36.	2.1	4
38	3J1346 Bio-molecular sensing by use of DNA that can be activated and reset via photonic signals(Bioengineering2,The 49th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2011, 51, S142.	0.0	0
39	Spatially parallel control of DNA reactions in optically manipulated microdroplets. Journal of Nanophotonics, 2011, 5, 051702.	0.4	5
40	A photonic DNA processor: concept and implementation. , 2011, , .		5
41	Nanoscale logic operation in optically manipulated micro-droplets. Proceedings of SPIE, 2010, , .	0.8	2
42	2P345 Photoregulating activation of functionality in molecular recognition of DNA(The 48th Annual) Tj ETQq0 C) 0 rg.BT /C	overlock 10 Tf
43	Photonic Switching of DNA's Position That Represents the Internal State in Photonic DNA Automaton. Proceedings in Information and Communications Technology, 2010, , 276-289.	0.2	0
44	A nanoscale ruler by use of fluorescence resonance energy transfer and DNA nano-structure. , 2009, ,		0
45	An Active Intraoral Shape Measurement Scheme Using a Compact Compound-Eye Camera with Integrated Pattern Projectors. Japanese Journal of Applied Physics, 2009, 48, 09LB04.	0.8	12
46	Implementation of a Nanoscale Automaton Using DNA Conformation Controlled by Optical Signals. Japanese Journal of Applied Physics, 2009, 48, 09LA01.	0.8	4
47	Self-Contained Photonically-Controlled DNA Tweezers. Applied Physics Express, 2009, 2, 025004.	1.1	17
48	Enhancing the performance of photonic DNA nanomachines for implementing photonic nanoscale automaton. Proceedings of SPIE, 2009, , .	0.8	0
49	Three-dimensional dynamic optical manipulation by combining a diffractive optical element and a spatial light modulator. Optical Review, 2008, 15, 105-109.	1.2	9

50 State-transition of DNA nanomachines based on photonic control. , 2008, , .

51	Implementation of Molecular Addressing Technique Based on Photoinduced Cleavage Reaction. , 2007, ,	0
52	Parallel optical tweezers with combining a diffractive optical element and a spatial light modulator for photonic DNA memory. , 2007, , .	0
53	3D information acquisition using a compound imaging system. , 2007, , .	9

⁵⁴ Photonic Implementation of Quantum Computation Algorithm Based on Spatial Coding. Optical 1.2 0 Review, 2007, 14, 260-265.

#	Article	IF	CITATIONS
55	Three-Dimensional Information Acquisition Using a Compound Imaging System. Optical Review, 2007, 14, 347-350.	1.2	61
56	Photonic DNA computing: concept and implementation. , 2006, , .		2
57	Photonic translation of DNAs between microscopic beads and a substrate for a photonic DNA memory. , 2006, , .		0
58	Biologically inspired object selection technique based on attractor selection. , 2006, 6310, 148.		2
59	Local Area Manipulation of DNA Molecules for Photonic DNA Memory. Lecture Notes in Computer Science, 2006, , 374-380.	1.0	Ο
60	Parallel Translation of Microscopic Objects in Three-Dimensional Traps by Sequential Change of Emitting Vertical-Cavity Surface-Emitting Lasers. Japanese Journal of Applied Physics, 2006, 45, 2603-2605.	0.8	0
61	Evaluation of Fundamental Characteristics of Information Systems Based on Photonic DNA Computing. Lecture Notes in Computer Science, 2006, , 192-205.	1.0	1
62	Control of DNA Molecules on a Microscopic Bead Using Optical Techniques for Photonic DNA Memory. Lecture Notes in Computer Science, 2006, , 213-223.	1.0	3
63	Photonic Information Techniques Based on Compound-Eye Imaging. Lecture Notes in Computer Science, 2006, , 252-264.	1.0	1
64	Toward photonic DNA computing: developing optical techniques for parallel manipulation of DNA. , 2005, , .		5
65	Methods for Manipulating DNA Molecules in a Micrometer Scale Using Optical Techniques. Lecture Notes in Computer Science, 2005, , 258-267.	1.0	1
66	Translation of DNA molecules based on optical control of DNA reactions for photonic DNA computing. , 2005, , .		3
67	Observation of a stacking process of microparticles with multiple beams. Applied Optics, 2005, 44, 3271.	2.1	0
68	Photonic DNA computing. The Review of Laser Engineering, 2005, 33, 239-240.	0.0	0
69	Manipulation of DNA molecules using optical techniques for optically assisted DNA computing. , 2004, , .		2
70	Fabrication of three-dimensional microscopic structure by VCSEL array trapping. , 2004, , .		2
71	Stacking and translation of microscopic particles by means of 2×2 beams emitted from a vertical-cavity surface-emitting laser array. Applied Physics Letters, 2003, 82, 2969-2971.	1.5	13
72	Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources. Applied Optics, 2002, 41, 5645.	2.1	13

#	Article	IF	CITATIONS
73	Optoelectronic parallel-matching architecture: architecture description, performance estimation, and prototype demonstration. Applied Optics, 2001, 40, 283.	2.1	2
74	Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources. Applied Optics, 2001, 40, 5430.	2.1	37
75	Wavelength-multiplexing diffractive phase elements: design, fabrication, and performance evaluation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 1082.	0.8	41
76	Prototype Demonstration of Discrete Correlation Processor-2 Based on High-Speed Optical Image Steering for Large-Fan-Out Reconfigurable Optical Interconnections. Optical Review, 2001, 8, 18-25.	1.2	5
77	Wavelength-Multiplexing Diffractive Phase Element with Quantized Phase Structure. Optical Review, 2001, 8, 245-248.	1.2	4
78	Diffractive phase element for shrinking focal spot diameter: Design, fabrication, and application to laser beam lithography. Optical Review, 2001, 8, 416.	1.2	0
79	Discrete correlation processor as a building core of a digital optical computing system: architecture and optoelectronic embodiment. Applied Optics, 1999, 38, 7276.	2.1	9