
David W Piotrowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4626258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expanding Reactivity in DNA-Encoded Library Synthesis via Reversible Binding of DNA to an Inert Quaternary Ammonium Support. Journal of the American Chemical Society, 2019, 141, 9998-10006.	13.7	119
2	Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biology, 2017, 15, e2001882.	5.6	104
3	Regio- and Enantioselective Synthesis of Azole Hemiaminal Esters by Lewis Base Catalyzed Dynamic Kinetic Resolution. Journal of the American Chemical Society, 2016, 138, 4818-4823.	13.7	59
4	Merging C(sp ³)–H activation with DNA-encoding. Chemical Science, 2020, 11, 12282-12288.	7.4	57
5	The use of plasma aldosterone and urinary sodium to potassium ratio as translatable quantitative biomarkers of mineralocorticoid receptor antagonism. Journal of Translational Medicine, 2011, 9, 180.	4.4	45
6	Identification of Tetrahydropyrido[4,3- <i>d</i>]pyrimidine Amides as a New Class of Orally Bioavailable TGR5 Agonists. ACS Medicinal Chemistry Letters, 2013, 4, 63-68.	2.8	45
7	RASSâ€Enabled S/Pâ^'C and Sâ^'N Bond Formation for DEL Synthesis. Angewandte Chemie - International Edition, 2020, 59, 7377-7383.	13.8	44
8	A Small-Molecule Oral Agonist of the Human Glucagon-like Peptide-1 Receptor. Journal of Medicinal Chemistry, 2022, 65, 8208-8226.	6.4	42
9	Short Hydrophobic Peptides with Cyclic Constraints Are Potent Glucagon-like Peptide-1 Receptor (GLP-1R) Agonists. Journal of Medicinal Chemistry, 2015, 58, 4080-4085.	6.4	38
10	Small Molecule Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors: Hit to Lead Optimization of Systemic Agents. Journal of Medicinal Chemistry, 2018, 61, 5704-5718.	6.4	37
11	Liverâ€Targeted Smallâ€Molecule Inhibitors of Proprotein Convertase Subtilisin/Kexin Type 9 Synthesis. Angewandte Chemie - International Edition, 2017, 56, 16218-16222.	13.8	35
12	The discovery of novel calcium sensing receptor negative allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3328-3332.	2.2	34
13			

DAVID W PIOTROWSKI

#	Article	IF	CITATIONS
19	Optimization of triazole-based TGR5 agonists towards orally available agents. MedChemComm, 2013, 4, 205-210.	3.4	25
20	Identification of (<i>R</i>)-6-(1-(4-Cyano-3-methylphenyl)-5-cyclopentyl-4,5-dihydro-1 <i>H</i> -pyrazol-3-yl)-2-methoxynicotinic Acid, a Highly Potent and Selective Nonsteroidal Mineralocorticoid Receptor Antagonist. Journal of Medicinal Chemistry, 2014, 57, 4273-4288.	6.4	22
21	Regioselective Hydroarylations and Parallel Kinetic Resolution of Vince Lactam. Angewandte Chemie - International Edition, 2013, 52, 10607-10610.	13.8	21
22	1-((3S,4S)-4-Amino-1-(4-substituted-1,3,5-triazin-2-yl) pyrrolidin-3-yl)-5,5-difluoropiperidin-2-one inhibitors of DPP-4 for the treatment of type 2 diabetes. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1810-1814.	2.2	20
23	A Scalable Route for the Regio- and Enantioselective Preparation of a Tetrazole Prodrug: Application to the Multi-Gram-Scale Synthesis of a PCSK9 Inhibitor. Organic Process Research and Development, 2017, 21, 1990-2000.	2.7	20
24	Deuterium isotope effects in drug pharmacokinetics II: Substrate-dependence of the reaction mechanism influences outcome for cytochrome P450 cleared drugs. PLoS ONE, 2018, 13, e0206279.	2.5	19
25	Discovery of a Novel Small-Molecule Modulator of C–X–C Chemokine Receptor Type 7 as a Treatment for Cardiac Fibrosis. Journal of Medicinal Chemistry, 2018, 61, 3685-3696.	6.4	18
26	Hydroarylation of 2-azabicyclohept-5-en-3-one. Tetrahedron Letters, 2010, 51, 17-19.	1.4	16
27	Identification of Morpholino-2 <i>H</i> -pyrido[3,2- <i>b</i>][1,4]oxazin-3(4 <i>H</i>)-ones as Nonsteroidal Mineralocorticoid Antagonists. Journal of Medicinal Chemistry, 2018, 61, 1086-1097.	6.4	15
28	Acylative Dynamic Kinetic Resolution of Secondary Alcohols: Tandem Catalysis by HyperBTM and BA e kvall's Ruthenium Complex. Journal of Organic Chemistry, 2021, 86, 7189-7202.	3.2	12
29	Discovery of N-(piperidin-3-yl)-N-(pyridin-2-yl)piperidine/piperazine-1-carboxamides as small molecule inhibitors of PCSK9. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3685-3688.	2.2	11
30	Design and synthesis of aryl sulfonamide-based nonsteroidal mineralocorticoid receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6239-6242.	2.2	10
31	Synthesis of a <i>cis</i> 2,5-Disubstituted Morpholine by De-epimerization: Application to the Multigram Scale Synthesis of a Mineralocorticoid Antagonist. Organic Process Research and Development, 2013, 17, 934-939.	2.7	10
32	A convenient and rapid approach for the synthesis of 1-benzyl-3-heterocyclic pyrazoles. Tetrahedron Letters, 2009, 50, 5479-5481.	1.4	9
33	Synthesis and cross coupling of a highly substituted 2-pyridylboronate: application to the large scale synthesis of a mineralocorticoid antagonist. Tetrahedron Letters, 2011, 52, 7025-7029.	1.4	9
34	Overcoming the Challenges of Making a Single Enantiomer N-1 Substituted Tetrazole Prodrug Using a Tin-Mediated Alkylation and Enzymatic Resolution. Organic Process Research and Development, 2019, 23, 1167-1177.	2.7	9
35	RASSâ€Enabled S/Pâ^'C and Sâ^'N Bond Formation for DEL Synthesis. Angewandte Chemie, 2020, 132, 7447-7453.	2.0	9
36	Substituted azabicyclo[2.2.1]heptanes via nitrenium ion rearrangement. Tetrahedron Letters, 2012, 53, 1009-1012.	1.4	7

#	Article	IF	CITATIONS
37	<scp>PF</scp> â€07059013: A nonâ€covalent hemoglobin modulator favorably impacts disease state in a mouse model of sickle cell disease. American Journal of Hematology, 2021, 96, E272-E275.	4.1	5
38	Stereodefined Cyclopentanes by Hydroarylation–Ring Opening. Synthetic Communications, 2013, 43, 1007-1015.	2.1	4
39	Synthesis and Analysis of Macrocyclic Peptides with 310-Helical Structure. Synlett, 2015, 26, 1164-1168.	1.8	2
40	Liverâ€Targeted Smallâ€Molecule Inhibitors of Proprotein Convertase Subtilisin/Kexin Type 9 Synthesis. Angewandte Chemie, 2017, 129, 16436-16440.	2.0	1
41	Discovery and Early Development of Small Molecule Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors. ACS Symposium Series, 2019, , 267-296.	0.5	0
42	A Novel Non-Covalent Modulator of Hemoglobin Improves Anemia and Reduces Sickling in a Mouse Model of Sickle Cell Disease. Blood, 2019, 134, 207-207.	1.4	0