
Samuel Penna Wanner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4626005/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Influence of Mental Fatigue on Physical Performance, and Physiological and Perceptual Responses of Judokas Submitted to the Special Judo Fitness Test. Journal of Strength and Conditioning Research, 2022, 36, 461-468.	1.0	8
2	Does executive functions' performance at rest predict executive function performance during acute physical exercise?. International Journal of Sport and Exercise Psychology, 2022, 20, 1490-1506.	1.1	5
3	Combination of Aerobic Training and Cocoa Flavanols as Effective Therapies to Reduce Metabolic and Inflammatory Disruptions in Insulin-Resistant Rats: The Exercise, Cocoa, and Diabetes Study. International Journal of Sport Nutrition and Exercise Metabolism, 2022, 32, 89-101.	1.0	1
4	The role of peripheral transient receptor potential vanilloid 1 channels in stress-induced hyperthermia in rats subjected to an anxiogenic environment. Journal of Thermal Biology, 2022, 106, 103191.	1.1	0
5	An exploratory study of short-term camping in Antarctica: Hormonal and mood states changes. Czech Polar Reports, 2022, 11, 352-373.	0.2	1
6	A 32-day long fieldwork in Antarctica improves heat tolerance during physical exercise. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210593.	0.3	3
7	Exercise-based cardiac rehabilitation after myocardial revascularization: a systematic review and meta-analysis. Reviews in Cardiovascular Medicine, 2022, 23, 074.	0.5	11
8	Effectiveness of regular physical activity in preventing the progression of arterial hypertension: improved cardiovascular autonomic control during sleep. Hypertension Research, 2022, 45, 1213-1216.	1.5	2
9	Reliability of physical performance and thermoregulatory parameters in rats subjected to incremental treadmill running. Journal of Thermal Biology, 2022, 108, 103270.	1.1	2
10	Heart rate variability, thyroid hormone concentration, and neuropsychological responses in Brazilian navy divers: a case report of diving in Antarctic freezing waters. Anais Da Academia Brasileira De Ciencias, 2022, 94, .	0.3	1
11	Independent effects of rapid eye movement sleep deprivation and exposure to environmental heat stress on aerobic performance and thermoregulatory responses in exercising rats. Temperature, 2021, 8, 188-201.	1.6	5
12	Preseason Training Improves Perception of Fatigue and Recovery From a Futsal Training Session. International Journal of Sports Physiology and Performance, 2021, 16, 557-564.	1.1	8
13	Physical exercise-induced thermoregulatory responses in trained rats: Effects of manipulating the duration and intensity of aerobic training sessions. Journal of Thermal Biology, 2021, 97, 102878.	1.1	5
14	No Effects of Mental Fatigue and Cerebral Stimulation on Physical Performance of Master Swimmers. Frontiers in Psychology, 2021, 12, 656499.	1.1	13
15	Impaired thermoregulation in spontaneously hypertensive rats during physical exercise is related to reduced hypothalamic neuronal activation. Pflugers Archiv European Journal of Physiology, 2020, 472, 1757-1768.	1.3	4
16	Hormonal, autonomic cardiac and mood states changes during an Antarctic expedition: From ship travel to camping in Snow Island. Physiology and Behavior, 2020, 224, 113069.	1.0	19
17	Development and reliability of a test for assessing executive functions during exercise. Applied Neuropsychology Adult, 2020, , 1-11.	0.7	8
18	Comparative effects of two heat acclimation protocols consisting of high-intensity interval training in the heat on aerobic performance and thermoregulatory responses in exercising rats. PLoS ONE, 2020, 15, e0229335.	1.1	10

#	Article	IF	CITATIONS
19	The magnitude of physical exercise-induced hyperthermia is associated with changes in the intestinal permeability and expression of tight junction genes in rats. Journal of Thermal Biology, 2020, 91, 102610.	1.1	9
20	Influence of Faster and Slower Recovery-Profile Classifications, Self-Reported Sleep, Acute Training Load, and Phase of the Microcycle on Perceived Recovery in Futsal Players. International Journal of Sports Physiology and Performance, 2020, 15, 648-653.	1.1	9
21	Ingestion of a moderate dose of alcohol enhances physical exercise-induced changes in blood lactate concentration. Brazilian Journal of Medical and Biological Research, 2020, 53, e9200.	0.7	0
22	Title is missing!. , 2020, 15, e0229335.		0
23	Title is missing!. , 2020, 15, e0229335.		Ο
24	Title is missing!. , 2020, 15, e0229335.		0
25	Title is missing!. , 2020, 15, e0229335.		0
26	Title is missing!. , 2020, 15, e0229335.		0
27	Title is missing!. , 2020, 15, e0229335.		0
28	Rats with higher intrinsic exercise capacities exhibit greater preoptic dopamine levels and greater mechanical and thermoregulatory efficiencies while running. Journal of Applied Physiology, 2019, 126, 393-402.	1.2	12
29	The time-course of thermoregulatory responses during treadmill running is associated with running duration-dependent hypothalamic neuronal activation in rats. Brain Structure and Function, 2019, 224, 2775-2786.	1.2	12
30	Supplementation with Saccharomyces boulardii Increases the Maximal Oxygen Consumption and Maximal Aerobic Speed Attained by Rats Subjected to an Incremental-Speed Exercise. Nutrients, 2019, 11, 2352.	1.7	18
31	Faster and Slower Posttraining Recovery in Futsal: Multifactorial Classification of Recovery Profiles. International Journal of Sports Physiology and Performance, 2019, 14, 1089-1095.	1.1	12
32	Aerobic training induces differential expression of genes involved in lipid metabolism in skeletal muscle and white adipose tissues. Journal of Cellular Biochemistry, 2019, 120, 18883-18893.	1.2	7
33	Spontaneously hypertensive rats have greater impairments in regulating abdominal temperature than brain cortex temperature following physical exercise. Journal of Thermal Biology, 2019, 83, 30-36.	1.1	8
34	THE EFFECT OF BCAA ON ISOMETRIC FORCE FOLLOWING ENDURANCE EXERCISE IN A HOT ENVIRONMENT. Revista Brasileira De Medicina Do Esporte, 2019, 25, 24-29.	0.1	5
35	Aerobic training reduces immune cell recruitment and cytokine levels in adipose tissue in obese mice. Applied Physiology, Nutrition and Metabolism, 2019, 44, 512-520.	0.9	9
36	Aerobic Training Reduces Immune Cell Recruitment and Cytokine Levels in Adipose Tissue in Obese Mice. FASEB Journal, 2019, 33, lb601.	0.2	0

#	Article	IF	CITATIONS
37	Differential Effects of a Bout of Moderateâ€intensity Physical Exercise on Adipose Tissue Inflammation in Lean and in Obese Mice. FASEB Journal, 2019, 33, lb607.	0.2	0
38	TRPV1 Exaggerates Cardiovascular Responses to Physical Exercise in Normotensive but Not in Hypertensive Rats. FASEB Journal, 2019, 33, 540.13.	0.2	0
39	Auditory stimulation by exposure to melodic music increases dopamine and serotonin activities in rat forebrain areas linked to reward and motor control. Neuroscience Letters, 2018, 673, 73-78.	1.0	28
40	Mental Fatigue Impairs Physical Performance in Young Swimmers. Pediatric Exercise Science, 2018, 30, 208-215.	0.5	53
41	Nitrate supplementation improves physical performance specifically in non-athletes during prolonged open-ended tests: a systematic review and meta-analysis. British Journal of Nutrition, 2018, 119, 636-657.	1.2	34
42	Pre-exercise exposure to the treadmill setup changes the cardiovascular and thermoregulatory responses induced by subsequent treadmill running in rats. Temperature, 2018, 5, 109-122.	1.6	13
43	The changes in maximal oxygen uptake (VÌŠO2MAX) induced by physical exertion during an Antarctic expedition depend on the initial VIŠO2MAX of the individuals: a case study of the Brazilian expedition. International Journal of Circumpolar Health, 2018, 77, 1521244.	0.5	11
44	Physical Exercise-Induced Cardiovascular and Thermoregulatory Adjustments Are Impaired in Rats Subjected to Cutaneous Artery Denervation. Frontiers in Physiology, 2018, 9, 74.	1.3	11
45	Author's Reply to Kitic: Comment on: "Association Between Exercise-Induced Hyperthermia and Intestinal Permeability: A Systematic Review― Sports Medicine, 2018, 48, 2887-2889.	3.1	7
46	Inhibition of Medial Preoptic Area Improves Physical Performance in Trained Rats. FASEB Journal, 2018, 32, lb268.	0.2	0
47	Association Between Exercise-Induced Hyperthermia and Intestinal Permeability: A Systematic Review. Sports Medicine, 2017, 47, 1389-1403.	3.1	91
48	Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats. Journal of Neuroscience, 2017, 37, 6956-6971.	1.7	33
49	Changes in systolic arterial pressure variability are associated with the decreased aerobic performance of rats subjected to physical exercise in the heat. Journal of Thermal Biology, 2017, 63, 31-40.	1.1	6
50	Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. Brazilian Journal of Medical and Biological Research, 2017, 50, e6432.	0.7	118
51	Physical Exercise-Induced Changes in Brain Temperature. , 2017, , 29-38.		2
52	Effects of manipulating the duration and intensity of aerobic training sessions on the physical performance of rats. PLoS ONE, 2017, 12, e0183763.	1.1	22
53	Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses. Brazilian Journal of Medical and Biological Research, 2016, 49, e5183.	0.7	15
54	Metabolic Demand and Internal Training Load in Technical-Tactical Training Sessions of Professional Futsal Players. Journal of Strength and Conditioning Research, 2016, 30, 2330-2340.	1.0	13

#	Article	IF	CITATIONS
55	Nutritional strategies for maximizing recovery from strenuous exercise in the heat: An important role for carbohydrate (sago) supplementation. Temperature, 2016, 3, 366-368.	1.6	1
56	Brazil: What country is this?. Temperature, 2016, 3, 11-14.	1.6	0
57	Brain Temperature in Spontaneously Hypertensive Rats during Physical Exercise in Temperate and Warm Environments. PLoS ONE, 2016, 11, e0155919.	1.1	21
58	Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology. Temperature, 2015, 2, 457-475.	1.6	39
59	The dynamics of physical exercise-induced increases in thalamic and abdominal temperatures are modified by central cholinergic stimulation. Neuroscience Letters, 2015, 590, 193-198.	1.0	12
60	Increased brain <scp>l</scp> â€erginine availability facilitates cutaneous heat loss induced by running exercise. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 609-616.	0.9	23
61	Commentaries on Viewpoint: Can elite athletes benefit from dietary nitrate supplementation?. Journal of Applied Physiology, 2015, 119, 762-769.	1.2	15
62	Hypothalamic Temperature of Rats Subjected to Treadmill Running in a Cold Environment. PLoS ONE, 2014, 9, e111501.	1.1	27
63	Association between the increase in brain temperature and physical performance at different exercise intensities and protocols in a temperate environment. Brazilian Journal of Medical and Biological Research, 2014, 47, 679-688.	0.7	30
64	Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in core body temperature induced by acute heat exposure. British Journal of Nutrition, 2014, 112, 1601-1610.	1.2	44
65	Inhibition of tryptophan hydroxylase abolishes fatigue induced by central tryptophan in exercising rats. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, 80-88.	1.3	33
66	Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity. International Journal of Biometeorology, 2014, 58, 1077-1085.	1.3	20
67	L-Arginine Supplementation Prevents Increases in Intestinal Permeability and Bacterial Translocation in Male Swiss Mice Subjected to Physical Exercise under Environmental Heat Stress. Journal of Nutrition, 2014, 144, 218-223.	1.3	64
68	The paroxetine effect on exercise performance depends on the aerobic capacity of exercising individuals. Journal of Sports Science and Medicine, 2014, 13, 232-43.	0.7	10
69	Fatigue is mediated by cholinoceptors within the ventromedial hypothalamus independent of changes in core temperature. Scandinavian Journal of Medicine and Science in Sports, 2013, 23, 46-56.	1.3	28
70	Chronic sympathectomy of the caudal artery delays cutaneous heat loss during passive heating. Neuroscience Letters, 2013, 537, 11-16.	1.0	12
71	Physical Exercise Performance in Temperate and Warm Environments Is Decreased by an Impaired Arterial Baroreflex. PLoS ONE, 2013, 8, e72005.	1.1	23
72	Lipopolysaccharide-Induced Neuronal Activation in the Paraventricular and Dorsomedial Hypothalamus Depends on Ambient Temperature. PLoS ONE, 2013, 8, e75733.	1.1	23

#	Article	IF	CITATIONS
73	Aging reverses the role of the transient receptor potential vanilloid-1 channel in systemic inflammation from anti-inflammatory to proinflammatory. Cell Cycle, 2012, 11, 343-349.	1.3	39
74	Muscarinic receptors within the ventromedial hypothalamic nuclei modulate metabolic rate during physical exercise. Neuroscience Letters, 2011, 488, 210-214.	1.0	16
75	The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors. Journal of Physiology, 2011, 589, 2415-2431.	1.3	52
76	Thermoregulatory Phenotype of the <i>Trpv1</i> Knockout Mouse: Thermoeffector Dysbalance with Hyperkinesis. Journal of Neuroscience, 2011, 31, 1721-1733.	1.7	122
77	Hyperactive when young, hypoactive and overweight when aged: Connecting the dots in the story about locomotor activity, body mass, and aging in Trpv1 knockout mice. Aging, 2011, 3, 450-454.	1.4	32
78	Submaximal exerciseâ€induced increase of câ€Fos expression in the paraventricular nucleus of hypothalamus is related to the body heating rate. FASEB Journal, 2011, 25, 1053.28.	0.2	0
79	Sinoaortic denervation prevents enhanced heat loss induced by central cholinergic stimulation during physical exercise. Brain Research, 2010, 1366, 120-128.	1.1	20
80	Exercise-induced Fatigue is Mediated by Muscarinic Cholinoceptors within the Ventromedial Hypothalamus. Medicine and Science in Sports and Exercise, 2010, 42, 104.	0.2	1
81	Integrity of paraventricular nucleus is critical for thermoregulation adjustments during exercise. FASEB Journal, 2010, 24, 991.3.	0.2	0
82	Evidence that Functional Integrity of the Dorsomedial Hypothalamus is Critical for Physical Performance. Medicine and Science in Sports and Exercise, 2010, 42, 29.	0.2	0
83	Sinoaortic Denervation Prevents Enhanced Heat Loss Induced By Central Cholinergic Stimulation During Physical Exercise Medicine and Science in Sports and Exercise, 2010, 42, 112.	0.2	0
84	Thermoregulatory Responses Induced by Central Cholinergic Stimulation During Exercise Are Mediated By Arterial Baroreceptors FASEB Journal, 2009, 23, 788.6.	0.2	0
85	Evidence that brain Lâ€arginine availability modulates heat loss during physical exercise in rats. FASEB Journal, 2008, 22, 956.12.	0.2	1
86	Muscarinic cholinoceptors in the ventromedial hypothalamic nucleus facilitate tail heat loss during physical exercise. Brain Research Bulletin, 2007, 73, 28-33.	1.4	34
87	Muscarinic cholinoceptors in the ventromedial hypothalamic nucleus (VMH) facilitate tail heat loss during exercise. FASEB Journal, 2007, 21, A579.	0.2	0
88	Estimated energy expenditure and training intensity in young female artistic gymnasts. Motriz Revista De Educacao Fisica, 0, 28, .	0.3	1