Takahiro Gunji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4625809/publications.pdf

Version: 2024-02-01

105	1,577	17 h-index	35
papers	citations		g-index
105	105	105	1298
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of fluorine doping on the network pore structure of non-porous organosilica bis(triethoxysilyl)propane (BTESP) membranes for use in molecular separation. Journal of Membrane Science, 2022, 644, 120083.	8.2	3
2	Bridged organosilica membranes incorporating carboxyl-functionalized cage silsesquioxanes for water desalination. Journal of Sol-Gel Science and Technology, 2022, 101, 315-322.	2.4	4
3	Development of PSQ-RO membranes with high water permeability by copolymerization of bis [3-(triethoxysilyl)propyl]amine and triethoxy(3-glycidyloxypropyl)silane. Journal of Membrane Science, 2022, 644, 120162.	8.2	8
4	Steam treatment of metal acetylacetonate and ethyl acetoacetate complexes at 90°C for preparation of metal oxides. Inorganica Chimica Acta, 2022, 535, 120864.	2.4	3
5	Low-temperature synthesis of AMoO4 (A = Ba, Ca, Co, Ni) by steam treatment of acetylacetonate and ethyl acetoacetate complexes. Journal of Sol-Gel Science and Technology, 2022, 103, 576-583.	2.4	1
6	Development of Highly Water-Permeable Robust PSQ-Based RO Membranes by Introducing Hydroxyethylurea-Based Hydrophilic Water Channels. ACS Applied Materials & Emp; Interfaces, 2022, 14, 21426-21435.	8.0	4
7	Preparation and film properties of polysiloxanes consisting of di- and quadra-functional hybrid units. Journal of Sol-Gel Science and Technology, 2022, 104, 724-734.	2.4	4
8	Syntheses and properties of Cu(II), Al(III), and Ti(IV) coordination polymers using an acetylacetonato-terminated polyhedral oligomeric silsesquioxane. Polymer Journal, 2022, 54, 985-993.	2.7	2
9	Development of robust and high-performance polysilsesquioxane reverse osmosis membranes modified by SiO2 nanoparticles for water desalination. Separation and Purification Technology, 2022, 296, 121421.	7.9	4
10	Easy and environmentally friendly synthesis method for T8H (HSiO3/2)8. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 316-320.	1.6	0
11	Behavior of zinc- and aluminum î²-ketoesterate complexes during steaming treatment. Journal of Sol-Gel Science and Technology, 2021, 99, 263-272.	2.4	3
12	Preparation of polysilsesquioxane reverse osmosis membranes for water desalination from tris[(ethoxysilyl)alkyl]amines by sol–gel process and interfacial polymerization. Applied Organometallic Chemistry, 2021, 35, e6374.	3.5	5
13	Synthesis of indium tin oxide films from ethyl acetoacetonato complexes at low temperatures. Journal of Sol-Gel Science and Technology, 2021, 100, 68-73.	2.4	4
14	A Z-scheme system constructed from WO3 modified TiO2 doped with Cr and Sb for visible light-driven overall water splitting. Applied Physics Letters, 2021, 119, 113901.	3.3	4
15	A review of phosphorus(V)-substituted titanium-oxo clusters. Journal of Sol-Gel Science and Technology, 2021, 100, 205-223.	2.4	7
16	Fineâ€ŧuned, molecular omposite, organosilica membranes for highly efficient propylene/propane separation via suitable pore size. AICHE Journal, 2020, 66, e16850.	3.6	14
17	Characterization of a flexible self-cleaning film with photoinduced hydrophilicity comprising phosphonic-acid-modified polysilsesquioxane-anchored titanium dioxide. Thin Solid Films, 2020, 714, 138395.	1.8	8
18	Soluble ethane-bridged silsesquioxane polymer by hydrolysis–condensation of bis(trimethoxysilyl)ethane: characterization and mixing in organic polymers. Journal of Polymer Research, 2020, 27, 1.	2.4	9

#	Article	IF	CITATIONS
19	Preparation and water desalination properties of bridged polysilsesquioxane membranes with divinylbenzene and divinylpyridine units. Polymer Journal, 2020, 52, 1367-1374.	2.7	10
20	Preparation and properties of methyl- and cyclohexylsilsesquioxane oligomers as organic–inorganic fillers. Journal of Sol-Gel Science and Technology, 2020, 95, 474-481.	2.4	8
21	Preparation, characterization, and desulfurization ability of bulk porous silica-supported ZnO. Journal of Sol-Gel Science and Technology, 2020, 95, 482-491.	2.4	О
22	Pore size tuning of bis(triethoxysilyl)propane (BTESP)-derived membrane for gas separation: Effects of the acid molar ratio in the sol and of the calcination temperature. Separation and Purification Technology, 2020, 242, 116742.	7.9	8
23	In–Fe mixed oxide as an oxygen-evolution photocatalyst for visible-light-driven Z-scheme water splitting. Sustainable Energy and Fuels, 2020, 4, 2686-2690.	4.9	6
24	Efficient H ₂ O ₂ Production via H ₂ O Oxidation on an Anode Modified with Sbâ€Containing Mixed Metal Oxides. ChemElectroChem, 2020, 7, 2448-2455.	3.4	22
25	Organic–inorganic hybrids based on poly(bisphenol A-co-epichlorohydrin) containing titanium phosphonate clusters. Polymer Journal, 2019, 51, 1265-1271.	2.7	4
26	ZnO formation through decomposition of zinc bis(ethyl acetoacetate) by steaming treatment. Journal of Sol-Gel Science and Technology, 2019, 91, 255-260.	2.4	6
27	In situ preparation of platinum nanoparticles in mesoporous silica using linear polyethyleneimine as a protective agent. Journal of the Ceramic Society of Japan, 2019, 127, 531-537.	1.1	0
28	Tailoring the microstructure and permeation properties of bridged organosilica membranes via control of the bond angles. Journal of Membrane Science, 2019, 584, 56-65.	8.2	35
29	2-Triethoxysilylazulene derivatives: Syntheses and optical properties, and hydrolysisâ€"condensation of 2-triethoxysilylazulene. Journal of Sol-Gel Science and Technology, 2019, 91, 399-406.	2.4	5
30	Preparation of Polysilsesquioxanes via Hydrolysis-Condensation Using Formic Acid and their Application to Organic-Inorganic Hybrid Coating Films. Journal of the Japan Society of Colour Material, 2019, 92, 262-267.	0.1	0
31	Synthesis, characterization and properties of titanium phosphonate clusters. Polyhedron, 2018, 147, 1-8.	2.2	13
32	Preparation and characterization of stable DQ silicone polymer sols. Journal of Sol-Gel Science and Technology, 2018, 88, 660-670.	2.4	8
33	Preparation of Hybrid Organosilica Reverse Osmosis Membranes by Interfacial Polymerization of Bis[(trialkoxysilyl)propyl]amine. Chemistry Letters, 2018, 47, 1210-1212.	1.3	8
34	Diethylenedioxane-bridged microporous organosilica membrane for gas and water separation. Separation and Purification Technology, 2018, 207, 370-376.	7.9	13
35	Properties and surface morphologies of organic–inorganic hybrid thin films containing titanium phosphonate clusters. Polymer Journal, 2018, 50, 1169-1177.	2.7	8
36	Preparation of Ruthenium Dithiolene Complex/Polysiloxane Films and Their Responses to CO Gas. Molecules, 2018, 23, 845.	3.8	2

#	Article	IF	Citations
37	Zinc–diethanolamine complex: synthesis, characterization, and formation mechanism of zinc oxide via thermal decomposition. Journal of Sol-Gel Science and Technology, 2018, 87, 743-748.	2.4	18
38	Syntheses of cage octasilicate polymers. Journal of Sol-Gel Science and Technology, 2017, 81, 21-26.	2.4	3
39	Photocatalytic Z-Scheme Water Splitting for Independent H ₂ /O ₂ Production via a Stepwise Operation Employing a Vanadate Redox Mediator under Visible Light. Journal of Physical Chemistry C, 2017, 121, 9691-9697.	3.1	64
40	Preparation and properties of organic–inorganic hybrid polymer films using [Ti4(μ3-O)(OiPr)5(μ-OiPr)3(PhPO3)3]·thf. Polymer Journal, 2017, 49, 223-228.	2.7	12
41	Structural and Electrochemical Properties of a Ruthenium–Diiron Dithiolene Complex. European Journal of Inorganic Chemistry, 2017, 2017, 3823-3828.	2.0	2
42	Preparation and properties of organic–inorganic hybrid materials using titanium phosphonate cluster. Polymer Journal, 2017, 49, 665-669.	2.7	21
43	Preparation of Organic-Inorganic Hybrid Polymer Films Using [Ti ₄ (ν- ₃ -O)(O ⁱ Pr) ₅ (ν-O ⁱ Pr) ₆ [Note: 130-133].	0 _{3<}	/sub>) <sub< th=""></sub<>
44	Enhanced Oxidative Hydrogen Peroxide Production on Conducting Glass Anodes Modified with Metal Oxides. ChemistrySelect, 2016, 1, 5721-5726.	1.5	110
45	Preparation of POSS derivatives by the dehydrogenative condensation of T ₈ ^H with alcohols. Journal of the Ceramic Society of Japan, 2015, 123, 739-743.	1.1	6
46	Carbon Monoxide Addition to Ruthenium–Dithiolene Complex and Polysiloxane Hybrid Film Formation. Chemistry - an Asian Journal, 2015, 10, 1881-1883.	3.3	11
47	Base-amplifying silicone resins with photobase-generating side chains and their application to negative-working photoresists. Journal of Polymer Science Part A, 2015, 53, 1205-1212.	2.3	8
48	Preparation, properties, and structure of polysiloxanes by acid-catalyzed controlled hydrolytic co-polycondensation of polymethyl(methoxy)siloxane and polymethoxysiloxane. Journal of Sol-Gel Science and Technology, 2015, 75, 564-573.	2.4	10
49	Synthesis of poly(3-(4-ethoxysulfonylphenoxy)-2-methylpropyl)silsesquioxane and its application as a proton-conducting membrane. Polymer Journal, 2015, 47, 287-293.	2.7	1
50	Preparation and properties of a fullerene/polysiloxane hybrid from chemically modified fullerene and polymethoxysiloxane. Journal of Sol-Gel Science and Technology, 2014, 72, 80-84.	2.4	2
51	Photosensitivity Characteristics of UV Curable Organic-Inorganic Hybrids Sensitized with Benzoin Derivatives as Photobase Generators. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 223-225.	0.3	3
52	Codoping Effect of Sr and Ti for α-Fe2O3 Photocatalyst on Water Oxidation Utilizing IO3ⴴ as a Reversible Redox Ion under Visible Light. Chemistry Letters, 2014, 43, 1560-1562.	1.3	7
53	Development of Photobase Generator with Benzoin Derivatives and Its Application to Photosensitive Materials. Chemistry Letters, 2014, 43, 612-614.	1.3	5
54	Preparation of <i>co</i> -polymethyl(alkoxy)siloxanes by acid-catalyzed controlled hydrolytic copolycondensation of methyl(trialkoxy)silane and tetraalkoxysilane. Journal of Polymer Science Part A, 2013, 51, 4732-4741.	2.3	11

#	Article	IF	Citations
55	Preparation of platinum nanoparticles that are dispersible in water over a wide pH range. Polymer Journal, 2013, 45, 540-544.	2.7	4
56	Preparation of polymer-protected NiMoPt alloy nanoparticles dispersible in water over a wide pH range by a hot-soap method and ligand-exchange reaction. Polymer Journal, 2013, 45, 993-996.	2.7	1
57	Silsesquioxanes: Recent Advancement and Novel Applications. International Journal of Polymer Science, 2012, 2012, 1-2.	2.7	11
58	Gas permeation properties of silica membranes with uniform pore sizes derived from polyhedral oligomeric silsesquioxane. AICHE Journal, 2012, 58, 1733-1743.	3.6	45
59	Preparation and properties of flexible freeâ€standing films via polyalkoxysiloxanes by acidâ€catalyzed controlled hydrolytic polycondensation of tetraethoxysilane and tetramethoxysilane. Applied Organometallic Chemistry, 2012, 26, 32-36.	3.5	13
60	Preparation and properties of polyhedral oligomeric silsesquioxane polymers. Applied Organometallic Chemistry, 2011, 25, 661-664.	3.5	7
61	Preparation and properties of polyhedral oligomeric silsesquioxane–polysiloxane copolymers. Applied Organometallic Chemistry, 2010, 24, 545-550.	3.5	21
62	Preparation of free-standing films with sulfonyl group from 3-mercaptopropyl(trimethoxy)silane/1,2-bis(triethoxysilyl)ethane copolymer. Polymer Journal, 2010, 42, 684-688.	2.7	11
63	Preparation of Pt Nanoparticles Dispersed in Mesoporous Silica. Materials Research Society Symposia Proceedings, 2009, 1217, 1.	0.1	0
64	Preparation of Platinum Nanoparticles Using Linear Polyethyleneimine as a Stabilizer by Liquid-phase Reduction Method. Materials Research Society Symposia Proceedings, 2009, 1217, 1.	0.1	0
65	Preparation and Properties of Siloxane/Epoxy Organic-Inorganic Hybrid Thin Films, Self-Standing Films, and Bulk Bodies. Polymer Journal, 2009, 41, 541-546.	2.7	8
66	Syntheses of linear ethoxysiloxanes by the oxidative condensation of triethoxysilane. Journal of Sol-Gel Science and Technology, 2008, 48, 163-167.	2.4	13
67	Preparation and properties of polyethoxysilsesquioxane-C60 hybrids. Journal of Polymer Science Part A, 2007, 45, 3273-3279.	2.3	12
68	Preparation of Polysiloxazanes and Their Transformation to Silicon Oxynitride. Journal of the Ceramic Society of Japan, 2006, 114, 492-496.	1.3	5
69	Preparation and characterization of mesoporous silica thin films from polyethoxysiloxanes. Journal of Polymer Science Part A, 2006, 44, 2542-2550.	2.3	8
70	Application of Novel Base Amplifiers with 3-Nitropentan-2-yl Group to Photoreactive Materials. Materials Research Society Symposia Proceedings, 2006, 961, 1.	0.1	0
71	Photoimaging Materials Based on Base-amplifying Silicone Resins Having Phenylsulfonylethyl Groups. Materials Research Society Symposia Proceedings, 2006, 961, 1.	0.1	0
72	Preparation and Properties of Organic-Inorganic Hybrid Gel Films Based on Polyvinylpolysilsesquioxane Synthesized from Trimethoxy(vinyl)silane. Journal of Sol-Gel Science and Technology, 2005, 33, 9-13.	2.4	16

#	Article	IF	CITATIONS
73	Synthesis, isolation, and characterization of polytitanasiloxanes and zirconasiloxanes by the hydrolytic cocondensation of tetraethoxysilane and titanium or zirconium tetraisopropoxide. Journal of Polymer Science Part A, 2005, 43, 763-772.	2.3	4
74	Preparation of polymethylsilsesquioxanes by the base-catalyzed hydrolytic polycondensation of triisopropoxy(methyl)silane. Journal of Polymer Science Part A, 2005, 43, 3623-3630.	2.3	8
75	Preparation and Properties of C60-Polysiloxane Hybrids. Journal of Sol-Gel Science and Technology, 2004, 32, 43-46.	2.4	9
76	Preparation and properties of alkoxy(methyl)silsesquioxanes as coating agents. Journal of Polymer Science Part A, 2004, 42, 3676-3684.	2.3	51
77	Oligo- and polysiloxanes. Progress in Polymer Science, 2004, 29, 149-182.	24.7	342
78	Studies on the Synthesis and Characterization of Titanium Containing Organic-Inorganic Hybrid from Styrene/Maleic Anhydride Alternating Copolymers. Journal of the Japan Society of Colour Material, 2004, 77, 345-349.	0.1	0
79	Preparation and properties of organic-inorganic hybrid gel films based on polyvinylpolysilsesquioxane synthesized from trimethoxy(vinyl)silane. Applied Organometallic Chemistry, 2003, 17, 580-588.	3.5	22
80	Preparation and properties of high molecular weight polyethoxysiloxanes stable to self-condensation by acid-catalyzed hydrolytic polycondensation of tetraethoxysilane. Journal of Polymer Science Part A, 2003, 41, 2250-2255.	2.3	27
81	Syntheses and Properties of Organic-Inorganic Hybrids from Zirconium Chelate and Acrylic Acids. Journal of the Japan Society of Colour Material, 2002, 75, 49-55.	0.1	0
82	Studies on the Synthesis and Characterization of Zirconium Containing Organic-Inorganic Hybrid from High Molecular Weight Styrene/Maleic Anhydride Alternating Copolymers. Journal of the Japan Society of Colour Material, 2002, 75, 463-469.	0.1	1
83	Syntheses and properties of sila-functional oligosiloxanes: Synthesis, structure, and spectra of linear and cyclic isocyanato(methyl)oligosiloxanes. Silicon Chemistry, 2002, 1, 367-375.	0.8	8
84	Preparation and characterization of organic-inorganic hybrids and coating films from 3-methacryloxypropylpolysilsesquioxane. Applied Organometallic Chemistry, 2001, 15, 683-692.	3.5	39
85	Preparation of C60–Silica Hybrid Monolith by Sol-Gel Process. Journal of Sol-Gel Science and Technology, 2001, 22, 219-224.	2.4	12
86	Preparation and Properties of Polysilsesquioxanes-Preparation and Properties of Polymer Hybrids from Vinyltrimethoxysilane Kobunshi Ronbunshu, 2000, 57, 198-207.	0.2	8
87	Synthesis and Characterization of Zr-Containing Organic-Inorganic Hybrids from Styrene/Maleic Anhydride Copolymer. Journal of the Japan Society of Colour Material, 2000, 73, 421-428.	0.1	0
88	Preparation and properties of polysilsesquioxanes: Polysilsesquioxanes and flexible thin films by acid-catalyzed controlled hydrolytic polycondensation of methyl- and vinyltrimethoxysilane. Journal of Polymer Science Part A, 1999, 37, 1017-1026.	2.3	83
89	Preparation and Properties of Polysilsesquioxanes - Polysilsesquioxanes as a Candidate to a Low Dielectrics for Electronic Devices Materials Research Society Symposia Proceedings, 1999, 565, 247.	0.1	4
90	Preparation of continuous zirconia fibres from polyzirconoxane synthesized by the facile one-pot reaction. Journal of Materials Science, 1998, 33, 1863-1870.	3.7	64

#	Article	IF	CITATIONS
91	Preparation and properties of silicon-containing polymer hybrids from 3-methacryloxypropyltrimethoxysilane. Applied Organometallic Chemistry, 1998, 12, 749-753.	3.5	41
92	Synthesis and Thermal Decomposition of Titanium Chelates Having Azo or Azomethine Ligand. Journal of the Japan Society of Colour Material, 1997, 70, 753-759.	0.1	0
93	Hydrolytic polycondensation of vinyltrimethoxysilane and formation of vinylpolysiloxane films. Journal of Sol-Gel Science and Technology, 1994, 2, 131-134.	2.4	17
94	Synthesis of polytitanosiloxanes and their transformation to SiO2–TiO2 ceramic fibers. Journal of Polymer Science Part A, 1994, 32, 3133-3139.	2.3	21
95	Preparation and Properties of YBCO Superconducting Precursor Using Ethyl Acetoacetate Complexes of Metals. Journal of the Ceramic Society of Japan, 1994, 102, 765-771.	1.3	2
96	Preparation of Continuous ZrO ₂ -Y ₂ O ₃ Fibers by Precursor Method Using Polyzirconoxane. Journal of the Ceramic Society of Japan, 1993, 101, 336-341.	1.3	15
97	Studies on the syntheses of polymetalloxanes and their properties as a precursor for amorphous oxide. IV. Properties of SiO2–TiO2 oxide fibers from polytitanosiloxane. Journal of Polymer Science Part A, 1992, 30, 371-377.	2.3	6
98	Condensation and structure of silicic acid in tetrahydrofuran. Journal of Polymer Science Part A, 1992, 30, 1779-1787.	2.3	17
99	Studies on the syntheses of polymetalloxanes and their properties as a precursor for amorphous oxide. VII. Preparation and properties of polyzirconoxanes as a precursor for zirconia fibers by the hydrolysis of bis (ethyl acetoacetato) zirconium dialkoxide. Journal of Polymer Science Part A, 1992, 30. 2295-2301.	2.3	9
100	Studies on the Synthesis of Polymetalloxanes and Their Properties as a Precursor for Amorphous Oxide (Part 6). Journal of the Ceramic Society of Japan, 1991, 99, 178-179.	1.3	7
101	Studies on the syntheses of polymetalloxanes and their properties as a precursor for amorphous oxide. V. Preparation and properties of polytitanosiloxanes from silicic acid and bis(2,4-pentanedionato)titanium diisopropoxide. Journal of Polymer Science Part A, 1991, 29, 941-947.	2.3	12
102	Preparation of Polymetalloxanes as a Precursor for Oxide Fibers from Metal Chelate Complex. Journal of the Ceramic Society of Japan, 1989, 97, 596-597.	1.3	9
103	Preparation of SiO ₂ -Al ₂ O ₃ and SiO ₂ -ZrO ₂ Fibers from Polyaluminosiloxanes and Polyzirconosiloxanes. Journal of the Ceramic Society of Japan, 1988, 96, 221-224.	1.3	11
104	Preparation of SiO ₂ -TiO ₂ Fibers from Polytitanosiloxanes. Journal of the Ceramic Association Japan, 1986, 94, 1243-1245.	0.2	14
105	Sol–gel reaction of titanium phosphonate alkoxide cluster. Applied Organometallic Chemistry, 0, , .	3.5	1