
Agnes Thalhammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4625694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Identification and Characterization of Both O-GlcNAcylation and Phosphorylation at the Murine Synapse. Molecular and Cellular Proteomics, 2012, 11, 215-229.	3.8	363
2	O-Linked N-Acetylglucosamine Proteomics of Postsynaptic Density Preparations Using Lectin Weak Affinity Chromatography and Mass Spectrometry. Molecular and Cellular Proteomics, 2006, 5, 923-934.	3.8	312
3	Comprehensive Identification of Phosphorylation Sites in Postsynaptic Density Preparations. Molecular and Cellular Proteomics, 2006, 5, 914-922.	3.8	229
4	Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8894-8899.	7.1	225
5	Activity-Dependent Regulation of Synaptic AMPA Receptor Composition and Abundance by β3 Integrins. Neuron, 2008, 58, 749-762.	8.1	197
6	Quantitative Analysis of Synaptic Phosphorylation and Protein Expression. Molecular and Cellular Proteomics, 2008, 7, 684-696.	3.8	188
7	The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials, 2010, 31, 2097-2104.	11.4	126
8	Subcellular localisation of recombinant α- and γ-synuclein. Molecular and Cellular Neurosciences, 2005, 28, 326-334.	2.2	74
9	Phosphorylation state of postsynaptic density proteins. Journal of Neurochemistry, 2005, 92, 1306-1316.	3.9	73
10	Cell adhesion and homeostatic synaptic plasticity. Neuropharmacology, 2014, 78, 23-30.	4.1	73
11	Exogenous Â-Synuclein Decreases Raft Partitioning of Cav2.2 Channels Inducing Dopamine Release. Journal of Neuroscience, 2014, 34, 10603-10615.	3.6	53
12	Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth. Journal of Neural Engineering, 2013, 10, 056022.	3.5	49
13	Alternative Splicing of P/Q-Type Ca 2+ Channels Shapes Presynaptic Plasticity. Cell Reports, 2017, 20, 333-343.	6.4	46
14	Integrin adhesion in brain assembly: From molecular structure to neuropsychiatric disorders. European Journal of Neuroscience, 2021, 53, 3831-3850.	2.6	42
15	Subunit Dependencies of N-Methyl-d-aspartate (NMDA) Receptor-Induced α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Internalization. Molecular Pharmacology, 2006, 69, 1251-1259.	2.3	37
16	CaMKII translocation requires local NMDA receptor-mediated Ca2+ signaling. EMBO Journal, 2006, 25, 5873-5883.	7.8	36
17	Activity-dependent Protein Dynamics Define Interconnected Cores of Co-regulated Postsynaptic Proteins. Molecular and Cellular Proteomics, 2013, 12, 29-41.	3.8	22
18	Densinâ€180: revised membrane topology, domain structure and phosphorylation status. Journal of Neurochemistry, 2009, 109, 297-302.	3.9	19

Agnes Thalhammer

#	Article	IF	CITATIONS
19	Emerging Roles of Activity-Dependent Alternative Splicing in Homeostatic Plasticity. Frontiers in Cellular Neuroscience, 2020, 14, 104.	3.7	16
20	Identification of Domains and Amino Acids Involved in GluR7 Ion Channel Function. Journal of Neuroscience, 2001, 21, 401-411.	3.6	15
21	PRRT2 modulates presynaptic Ca2+ influx by interacting with P/Q-type channels. Cell Reports, 2021, 35, 109248.	6.4	15
22	Inhibition by Lectins of Glutamate Receptor Desensitization Is Determined by the Lectin's Sugar Specificity at Kainate But Not AMPA Receptors. Molecular and Cellular Neurosciences, 2002, 21, 521-533.	2.2	13
23	Targeting Alternative Splicing as a Potential Therapy for Episodic Ataxia Type 2. Biomedicines, 2020, 8, 332.	3.2	13
24	Diverse inflammatory threats modulate astrocytes Ca2+ signaling via connexin43 hemichannels in organotypic spinal slices. Molecular Brain, 2021, 14, 159.	2.6	13
25	A desensitization-inhibiting mutation in the glutamate binding site of rat α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is dominant in heteromultimeric complexes. Neuroscience Letters, 1999, 277, 161-164.	2.1	9
26	Combining Optogenetics with Artificial microRNAs to Characterize the Effects of Gene Knockdown on Presynaptic Function within Intact Neuronal Circuits. Journal of Visualized Experiments, 2018, , .	0.3	4
27	Analysis and Quantification of Protein and Phosphorylation Expression at the Synapse. FASEB Journal, 2006, 20, A528.	O.5	0
28	Large scale analysis of synaptic phosphorylation and Oâ€GlcNAcylation reveals complex interplay between these postâ€translational modifications. FASEB Journal, 2012, 26, 978.2.	0.5	0