Uwe Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4625517/publications.pdf

Version: 2024-02-01

		2682572	2917675	
8	29	2	2	
papers	citations	h-index	g-index	
	=			
8	8	8	57	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	DynaMet: A Fully Automated Pipeline for Dynamic LC–MS Data. Analytical Chemistry, 2015, 87, 9679-9686.	6.5	17
2	ScalaFlux: AÂscalable approach to quantify fluxes in metabolic subnetworks. PLoS Computational Biology, 2020, 16, e1007799.	3.2	12
3	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		O
4	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks., 2020, 16, e1007799.		0
5	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		O
6	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks., 2020, 16, e1007799.		0
7	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		O
8	ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks. , 2020, 16, e1007799.		0