Debajyoti Bhattacharjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4625491/publications.pdf

Version: 2024-02-01

1307594 1125743 14 165 13 7 citations g-index h-index papers 14 14 14 152 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Theoretical investigation of atmospheric chemistry of volatile anaesthetic sevoflurane: reactions with the OH radicals and atmospheric fate of the alkoxy radical (CF ₃) ₂ CHOCHFO: thermal decomposition vs. oxidation. New Journal of Chemistry, 2014, 38, 2813-2822.	2.8	41
2	Mechanistic and kinetics study of the gas phase reactions of methyltrifluoroacetate with OH radical and Cl atom. Molecular Physics, 2013, 111, 860-867.	1.7	24
3	Catalytic oxidation of NO by Au2â^' dimers: a DFT study. RSC Advances, 2014, 4, 5399.	3.6	16
4	Theoretical study on the kinetics and branching ratios of the gas phase reactions of 4,4,4-trifluorobutanal (TFB) with OH radical in the temperature range of 250–400K and atmospheric pressure. Journal of Fluorine Chemistry, 2013, 154, 60-66.	1.7	14
5	A DFT study on structure, stabilities and electronic properties of double magnesium doped gold clusters. RSC Advances, 2014, 4, 56571-56581.	3.6	13
6	Theoretical study on the kinetics and branching ratios of the gas phase reactions of 1, 1-Dichlorodimethylether (DCDME) with Cl atom. Structural Chemistry, 2013, 24, 1621-1626.	2.0	11
7	DFT and QTAIM studies on structure and stability of beryllium doped gold clusters. Computational and Theoretical Chemistry, 2014, 1034, 61-72.	2.5	9
8	Catalytic activity of anionic Au–Ag dimer for nitric oxide oxidation: a DFT study. New Journal of Chemistry, 2015, 39, 2209-2216.	2.8	7
9	Effect of double aluminium doping on the structure, stability and electronic properties of small gold clusters. Journal of Materials Science, 2015, 50, 4586-4599.	3.7	7
10	Density functional study on structures, stabilities, and electronic properties of size-selected Pd n Si q (nÂ=Â1–7 and qÂ=Â0, +1, â^1) clusters. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	6
11	Theoretical insight on atmospheric chemistry of HFE-365mcf3: reactions with OH radicals, atmospheric lifetime, and fate of alkoxy radicals (CF3CF2CH(O•)OCH3/CF3CF2CH2OCH2O•). Journal of Molecular Modeling, 2015, 21, 69.	1.8	6
12	Theoretical investigation on unimolecular decomposition of malonic acid: a potential sink for ketene. RSC Advances, 2014, 4, 38034.	3.6	5
13	Atmospheric chemistry of HFE-7000 (I-C ₃ F ₇ OCH ₃) and isofluoro-propyl formate (i-C ₃ F ₇ OC(O)H): reactions with OH radicals, atmospheric lifetime and fate of alkoxy radical (i-C ₃ F ₇ OCH ₂ OCH _{OCH}}	1.7	5
14	2016, 114, 610 626. Theoretical investigation on mechanism, kinetics and thermochemistry of gas-phase reactions of ethyl trifluoroacetate with OH radicals. Journal of Fluorine Chemistry, 2015, 178, 79-85.	1.7	1