Huiling Tai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/462509/publications.pdf

Version: 2024-02-01

169 papers

9,678 citations

23544 58 h-index 94 g-index

170 all docs

170 docs citations

170 times ranked

6799 citing authors

#	Article	IF	CITATIONS
1	Facile, Flexible, Cost-Saving, and Environment-Friendly Paper-Based Humidity Sensor for Multifunctional Applications. ACS Applied Materials & Interfaces, 2019, 11, 21840-21849.	4.0	326
2	Paper-Based Sensors for Gas, Humidity, and Strain Detections: A Review. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31037-31053.	4.0	296
3	Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sensors and Actuators B: Chemical, 2007, 125, 644-650.	4.0	291
4	Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors and Actuators A: Physical, 2020, 301, 111789.	2.0	272
5	Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis. ACS Nano, 2020, 14, 6067-6075.	7.3	271
6	Enhanced ammonia response of Ti3C2T nanosheets supported by TiO2 nanoparticles at room temperature. Sensors and Actuators B: Chemical, 2019, 298, 126874.	4.0	222
7	Selfâ€Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Advanced Materials, 2021, 33, e2101262.	11.1	217
8	Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sensors and Actuators B: Chemical, 2020, 318, 128104.	4.0	217
9	A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sensors and Actuators B: Chemical, 2018, 261, 587-597.	4.0	196
10	A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy, 2020, 74, 104941.	8.2	193
11	Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy, 2018, 47, 316-324.	8.2	192
12	Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sensors and Actuators B: Chemical, 2008, 129, 319-326.	4.0	188
13	An integrated flexible self-powered wearable respiration sensor. Nano Energy, 2019, 63, 103829.	8.2	181
14	Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sensors and Actuators B: Chemical, 2018, 259, 269-281.	4.0	177
15	Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring. Advanced Functional Materials, 2021, 31, 2010962.	7.8	169
16	Recent advances in humidity sensors for human body related humidity detection. Journal of Materials Chemistry C, 2021, 9, 14963-14980.	2.7	167
17	Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sensors and Actuators B: Chemical, 2020, 317, 128204.	4.0	160
18	Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy, 2021, 89, 106321.	8.2	151

#	Article	IF	CITATIONS
19	Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film. Sensors and Actuators B: Chemical, 2016, 234, 145-154.	4.0	146
20	A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy, 2019, 58, 312-321.	8.2	143
21	Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sensors and Actuators B: Chemical, 2017, 251, 144-152.	4.0	141
22	Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sensors and Actuators B: Chemical, 2016, 223, 149-156.	4.0	130
23	Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2T hybrid sensitive films based gas sensor. Sensors and Actuators B: Chemical, 2020, 316, 128144.	4.0	130
24	Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature. Sensors and Actuators B: Chemical, 2020, 319, 128293.	4.0	129
25	ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature. Nanoscale Research Letters, 2016, 11, 130.	3.1	126
26	A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sensors and Actuators B: Chemical, 2019, 295, 86-92.	4.0	121
27	A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Metals, 2021, 40, 1459-1476.	3.6	121
28	Daily writing carbon ink: Novel application on humidity sensor with wide detection range, low detection limit and high detection resolution. Sensors and Actuators B: Chemical, 2021, 339, 129884.	4.0	113
29	PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature. Sensors and Actuators B: Chemical, 2021, 327, 128923.	4.0	108
30	Preparation, Characterization and Comparative NH3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films. Journal of Materials Science and Technology, 2010, 26, 605-613.	5.6	104
31	Highly sensitive and selective NO2 sensor of alkalized V2CT MXene driven by interlayer swelling. Sensors and Actuators B: Chemical, 2021, 344, 130150.	4.0	104
32	Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature. Nano Energy, 2018, 51, 231-240.	8.2	102
33	A Highâ€Performances Flexible Temperature Sensor Composed of Polyethyleneimine/Reduced Graphene Oxide Bilayer for Realâ€Time Monitoring. Advanced Materials Technologies, 2019, 4, 1800594.	3.0	102
34	UV Illumination-Enhanced Molecular Ammonia Detection Based On a Ternary-Reduced Graphene Oxide–Titanium Dioxide–Au Composite Film at Room Temperature. Analytical Chemistry, 2019, 91, 3311-3318.	3.2	97
35	Ultrathin Nb2CT nanosheets-supported polyaniline nanocomposite: Enabling ultrasensitive NH3 detection. Sensors and Actuators B: Chemical, 2021, 343, 130069.	4.0	94
36	Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self-assembly nanocomposite thin film at room temperature. Sensors and Actuators B: Chemical, 2017, 246, 85-95.	4.0	92

#	Article	IF	Citations
37	Paper and carbon ink enabled low-cost, eco-friendly, flexible, multifunctional pressure and humidity sensors. Smart Materials and Structures, 2021, 30, 055012.	1.8	91
38	A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sensors and Actuators B: Chemical, 2014, 203, 135-142.	4.0	88
39	Simultaneous Biomechanical and Biochemical Monitoring for Self-Powered Breath Analysis. ACS Applied Materials & Discrete Services, 2022, 14, 7301-7310.	4.0	86
40	A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chemical Engineering Journal, 2022, 438, 135588.	6.6	86
41	Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film. Sensors and Actuators B: Chemical, 2016, 230, 501-509.	4.0	81
42	Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sensors and Actuators B: Chemical, 2018, 255, 2203-2210.	4.0	80
43	Gas sensors based on multiple-walled carbon nanotubes-polyethylene oxide films for toluene vapor detection. Sensors and Actuators B: Chemical, 2014, 191, 24-30.	4.0	79
44	An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sensors and Actuators B: Chemical, 2019, 289, 182-185.	4.0	79
45	Novel application of attapulgite on high performance and low-cost humidity sensors. Sensors and Actuators B: Chemical, 2020, 305, 127534.	4.0	79
46	Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere. Journal of Materials Chemistry A, 2016, 4, 13203-13210.	5.2	77
47	Inspiration from Daily Goods: A Low-Cost, Facilely Fabricated, and Environment-Friendly Strain Sensor Based on Common Carbon Ink and Elastic Core-Spun Yarn. ACS Sustainable Chemistry and Engineering, 2019, 7, 17474-17481.	3.2	76
48	A do-it-yourself approach to achieving a flexible pressure sensor using daily use materials. Journal of Materials Chemistry C, 2021, 9, 13659-13667.	2.7	76
49	Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity. Journal of Hazardous Materials, 2022, 434, 128836.	6.5	73
50	Improving sensitivity of self-powered room temperature NO2 sensor by triboelectric-photoelectric coupling effect. Applied Physics Letters, 2019, 115 , .	1.5	72
51	Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology. Applied Surface Science, 2017, 419, 84-90.	3.1	67
52	Power generation humidity sensor based on primary battery structure. Chemical Engineering Journal, 2022, 446, 136910.	6.6	66
53	Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor. Materials Letters, 2016, 174, 28-31.	1.3	64
54	A wearable and highly sensitive strain sensor based on a polyethylenimine–rGO layered nanocomposite thin film. Journal of Materials Chemistry C, 2017, 5, 7746-7752.	2.7	64

#	Article	IF	Citations
55	A multifunctional wearable E-textile <i>via</i> integrated nanowire-coated fabrics. Journal of Materials Chemistry C, 2020, 8, 8399-8409.	2.7	64
56	Copper phthalocyanine thin film transistors for hydrogen sulfide detection. Sensors and Actuators B: Chemical, 2013, 176, 1191-1196.	4.0	62
57	Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Metals, 2021, 40, 1762-1767.	3.6	62
58	Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: Endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy, 2020, 78, 105256.	8.2	61
59	NiWO ₄ Microflowers on Multi-Walled Carbon Nanotubes for High-Performance NH ₃ Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52850-52860.	4.0	61
60	MXeneâ€Sponge Based Highâ€Performance Piezoresistive Sensor for Wearable Biomonitoring and Realâ€Time Tactile Sensing. Small Methods, 2022, 6, e2101051.	4.6	61
61	Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy. Sensors and Actuators B: Chemical, 2022, 369, 132302.	4.0	61
62	Edgeâ€Enriched Mo ₂ TiC ₂ T _x /MoS ₂ Heterostructure with Coupling Interface for Selective NO ₂ Monitoring. Advanced Functional Materials, 2022, 32, .	7.8	58
63	Self-assembly of TiO2/polypyrrole nanocomposite ultrathin films and application for an NH3gas sensor. International Journal of Environmental Analytical Chemistry, 2007, 87, 539-551.	1.8	54
64	High performance humidity sensor based on 3D mesoporous Co3O4 hollow polyhedron for multifunctional applications. Applied Surface Science, 2022, 585, 152698.	3.1	52
65	The Art of Integrated Functionalization: Super Stable Black Phosphorus Achieved through Metalâ€Organic Framework Coating. Advanced Functional Materials, 2020, 30, 2002232.	7.8	51
66	Enhanced Blocking Effect: A New Strategy to Improve the NO $<$ sub $>$ 2 $<$ /sub $>$ Sensing Performance of Ti $<$ sub $>$ 3 $<$ /sub $>$ C $<$ sub $>$ 2 $<$ /sub $>$ T $<$ sub $><$ i $>×<$ /i> $>$ 4sub $>$ by \hat{I}^3- Poly($<$ scp $>$ 1 $<$ /scp $>-$ glutamic acid) Modification. ACS Sensors, 2021, 6, 2858-2867.	4.0	51
67	A facile method to develop novel TiO 2 \prime rGO layered film sensor for detecting ammonia at room temperature. Materials Letters, 2016, 165, 127-130.	1.3	49
68	Gold-loaded tellurium nanobelts gas sensor for ppt-level NO2 detection at room temperature. Sensors and Actuators B: Chemical, 2022, 355, 131300.	4.0	49
69	Polymer coated sensor array based on quartz crystal microbalance for chemical agent analysis. European Polymer Journal, 2008, 44, 1157-1164.	2.6	48
70	Facilely constructed two-sided microstructure interfaces between electrodes and cellulose paper active layer: eco-friendly, low-cost and high-performance piezoresistive sensor. Cellulose, 2021, 28, 6389.	2.4	48
71	A chitosan/amido-graphene oxide-based self-powered humidity sensor enabled by triboelectric effect. Rare Metals, 2021, 40, 1995-2003.	3.6	47
72	Gas sensors for CO2 detection based on RGO–PEI films at room temperature. Science Bulletin, 2014, 59, 1999-2005.	1.7	46

#	Article	IF	CITATIONS
73	A Simple Graphene NH3 Gas Sensor via Laser Direct Writing. Sensors, 2018, 18, 4405.	2.1	46
74	Constructing Electrically and Mechanically Self-Healing Elastomers by Hydrogen Bonded Intermolecular Network. Langmuir, 2020, 36, 3029-3037.	1.6	45
75	High performance ethylene sensor based on palladium-loaded tin oxide: Application in fruit quality detection. Chinese Chemical Letters, 2020, 31, 2045-2049.	4.8	44
76	Optimizing Piezoelectric Nanocomposites by Highâ€Throughput Phaseâ€Field Simulation and Machine Learning. Advanced Science, 2022, 9, e2105550.	5.6	42
77	Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature. Sensors and Actuators B: Chemical, 2022, 363, 131790.	4.0	42
78	Thin film transistors gas sensors based on reduced graphene oxide poly(3-hexylthiophene) bilayer film for nitrogen dioxide detection. Chemical Physics Letters, 2014, 614, 275-281.	1.2	41
79	Wind energy harvesting and self-powered flow rate sensor enabled by contact electrification. Journal Physics D: Applied Physics, 2016, 49, 215601.	1.3	39
80	Facile and low-cost fabrication of a humidity sensor using naturally available sepiolite nanofibers. Nanotechnology, 2020, 31, 355501.	1.3	39
81	The Enhanced Formaldehyde-Sensing Properties of P3HT-ZnO Hybrid Thin Film OTFT Sensor and Further Insight into Its Stability. Sensors, 2015, 15, 2086-2103.	2.1	38
82	Enhanced Formaldehyde-Sensing Performances of Mixed Polyethyleneimine-Multiwalled Carbon Nanotubes Composite Films on Quartz Crystal Microbalance. IEEE Sensors Journal, 2015, 15, 6904-6911.	2.4	38
83	The Fabrication and Optimization of Thin-Film Transistors Based on Poly(3-Hexylthiophene) Films for Nitrogen Dioxide Detection. IEEE Sensors Journal, 2016, 16, 1865-1871.	2.4	38
84	Surface Engineering of a 3D Topological Network for Ultrasensitive Piezoresistive Pressure Sensors. ACS Applied Materials & Earny; Interfaces, 2020, 12, 38805-38812.	4.0	38
85	The Investigation of Reduced Graphene Oxide/P3HT Composite Films for Ammonia Detection. Integrated Ferroelectrics, 2014, 154, 73-81.	0.3	36
86	Facile primary battery-based humidity sensor for multifunctional application. Sensors and Actuators B: Chemical, 2022, 370, 132369.	4.0	34
87	Integrated cross-section interface engineering and surface encapsulating strategy: A high-response, waterproof, and low-cost paper-based bending strain sensor. Journal of Materials Chemistry C, 2021, 9, 14003-14011.	2.7	33
88	The investigation of reduced graphene oxide@ SnO2–polyaniline composite thin films for ammonia detection at room temperature. Journal of Materials Science: Materials in Electronics, 2015, 26, 833-841.	1.1	31
89	P–P heterojunction sensor of self-assembled polyaniline nano-thin film/microstructure silicon array for NH3 detection. Chemical Physics Letters, 2015, 621, 58-64.	1.2	30
90	Novel p-n heterojunction-type rGO/CeO2 bilayer membrane for room-temperature nitrogen dioxide detection. Materials Letters, 2017, 186, 49-52.	1.3	28

#	Article	IF	CITATIONS
91	Protrusion Microstructure-Induced Sensitivity Enhancement for Zinc Oxide–Carbon Nanotube Flexible Pressure Sensors. ACS Applied Electronic Materials, 2021, 3, 5506-5513.	2.0	28
92	Two-Sided Topological Architecture on a Monolithic Flexible Substrate for Ultrasensitive Strain Sensors. ACS Applied Materials & Strain Sensors. ACS Applied Materials & Strain S	4.0	27
93	Self-Polarization of PVDF Film Triggered by Hydrophilic Treatment for Pyroelectric Sensor with Ultra-Low Piezoelectric Noise. Nanoscale Research Letters, 2019, 14, 72.	3.1	26
94	Enhancing visible light-activated NO ₂ sensing properties of Au NPs decorated ZnO nanorods by localized surface plasmon resonance and oxygen vacancies. Materials Research Express, 2020, 7, 015924.	0.8	26
95	A sensitive film structure improvement of reduced graphene oxide based resistive gas sensors. Applied Physics Letters, 2014, 105, .	1.5	23
96	Facilely constructed randomly distributed surface microstructure for flexible strain sensor with high sensitivity and low detection limit. Journal Physics D: Applied Physics, 2021, 54, 284003.	1.3	23
97	Enhancing responsivity of ZnO nanowire based photodetectors by piezo-phototronic effect. Sensors and Actuators A: Physical, 2016, 241, 169-175.	2.0	22
98	Synergetic SERS Enhancement in a Metal-Like/Metal Double-Shell Structure for Sensitive and Stable Application. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13564-13570.	4.0	22
99	A New Model and Its Application for the Dynamic Response of RGO Resistive Gas Sensor. Sensors, 2019, 19, 889.	2.1	21
100	Self-assembled graphene oxide/polyethyleneimine films as high-performance quartz crystal microbalance humidity sensors. Rare Metals, 2021, 40, 1597-1603.	3.6	21
101	Humidity sensing properties of different single-walled carbon nanotube composite films fabricated by layer-by-layer self-assembly technique. Applied Physics A: Materials Science and Processing, 2012, 109, 111-118.	1.1	19
102	Enhanced Acetone-Sensing Properties of PEI Thin Film by GO-NH2 Functional Groups Modification at Room Temperature. Frontiers in Materials, 2019, 5, .	1.2	19
103	Adsorption behaviors of gas molecules on the surface of ZnO nanocrystals under UV irradiation. Science China Technological Sciences, 2019, 62, 2226-2235.	2.0	18
104	Wearable and washable textile-based strain sensors via a single-step, environment-friendly method. Science China Technological Sciences, 2021, 64, 441-450.	2.0	18
105	The fabrication and optimization of OTFT formaldehyde sensors based on Poly(3-hexythiophene)/ZnO composite films. Science China Technological Sciences, 2013, 56, 1877-1882.	2.0	16
106	The effect of the channel curve on the performance of micromachined gas chromatography column. Sensors and Actuators B: Chemical, 2017, 239, 304-310.	4.0	16
107	Nanocomposite films of p-type MoS2 nanosheets/n-type ZnO nanowires: Sensitive and low-temperature ppb-level NO2 detection. Materials Letters, 2020, 262, 127148.	1.3	16
108	Designing Cu ²⁺ as a Partial Substitution of Protons in Polyaniline Emeraldine Salt: Room-Temperature-Recoverable H ₂ S Sensing Properties and Mechanism Study. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27203-27213.	4.0	16

#	Article	IF	CITATIONS
109	Improved response/recovery speeds of ZnO nanoparticle-based sensor toward NO2 gas under UV irradiation induced by surface oxygen vacancies. Journal of Materials Science: Materials in Electronics, 2019, 30, 11395-11403.	1.1	15
110	Flexible organic thin-film transistors based on poly(3-hexylthiophene) films for nitrogen dioxide detection. Science China Technological Sciences, 2018, 61, 1696-1704.	2.0	13
111	A Facile Strategy for Low Young's Modulus PDMS Microbeads Enhanced Flexible Capacitive Pressure Sensors. Particle and Particle Systems Characterization, 2021, 38, 2100019.	1.2	13
112	Terahertz Absorption Characteristics of NiCr Film and Enhanced Absorption by Reactive Ion Etching in a Microbolometer Focal Plane Array. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34, 431-436.	1.2	12
113	Improvement of column efficiency in MEMS-Based gas chromatography column. RSC Advances, 2014, 4, 3726-3731.	1.7	12
114	Self-adaptive temperature and humidity compensation based on improved deep BP neural network for NO2 detection in complex environment. Sensors and Actuators B: Chemical, 2022, 362, 131812.	4.0	12
115	A carbon monoxide sensor based on single-walled carbon nanotubes doped with copper chloride. Science China Technological Sciences, 2013, 56, 2576-2580.	2.0	11
116	The response comparison of a hydrogen-bond acidic polymer to sarin, soman and dimethyl methyl phosphonate based on a surface acoustic wave sensor. Analytical Methods, 2014, 6, 1951-1955.	1.3	11
117	High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents. Nanoscale Research Letters, 2014, 9, 224.	3.1	11
118	A simple route to functionalize siloxane polymers for DMMP sensing. Journal of Applied Polymer Science, 2013, 130, 4516-4520.	1.3	10
119	Hydrogen-bond acidic polymers coated SAW sensors for 2,4-dinitrotoluene detection. RSC Advances, 2014, 4, 59643-59649.	1.7	10
120	Optimization of temperature uniformity of a serpentine thin film heater by a two-dimensional approach. Microsystem Technologies, 2019, 25, 69-82.	1.2	10
121	Development of a Novel Formaldehyde OTFT Sensor Based on P3HT/Fe ₂ O ₃ Nanocomposite Thin Film. Integrated Ferroelectrics, 2013, 144, 15-21.	0.3	8
122	MEMS-based column coated with reduced graphene oxide as stationary phase for gas chromatography. RSC Advances, 2017, 7, 32749-32756.	1.7	8
123	Effective Room-Temperature Ammonia-Sensitive Composite Sensor Based on Graphene Nanoplates and PANI. ECS Journal of Solid State Science and Technology, 2018, 7, Q3148-Q3152.	0.9	8
124	Selfâ€Assembly of 2D Nanosheets into 1D Nanostructures for Sensing NO 2. Small Structures, 2021, 2, 2100067.	6.9	8
125	Thermally Induced Antiâ€Aggregation Evolution of Thick Bulkâ€Heterojunction for vis–NIR Organic Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	8
126	Preparation of bilayer/three-layer PEO-carbon nanotube composite thin films and their toluene-sensing application. Science China Technological Sciences, 2013, 56, 1124-1128.	2.0	7

#	Article	IF	Citations
127	Self-powered humidity sensor based on triboelectric nanogenerator. , 2017, , .		7
128	Perspectives on self-powered respiration sensor based on triboelectric nanogenerator. Applied Physics Letters, 2021, 119, .	1.5	7
129	Gas sensors based on MWCNTs-PVP composite films for 1,2-dichloroethane vapor detection. Journal of Materials Science: Materials in Electronics, 2014, 25, 5095-5100.	1.1	6
130	Piezoelectric Textiles: Muscle Fibers Inspired Highâ€Performance Piezoelectric Textiles for Wearable Physiological Monitoring (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170136.	7.8	6
131	Selfâ€Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator (Adv. Mater. 35/2021). Advanced Materials, 2021, 33, 2170277.	11.1	6
132	Design and Development of MEMS Capacitive Large-Scale Strain Sensors. Integrated Ferroelectrics, 2013, 147, 123-130.	0.3	4
133	Development and Comparison Analysis of OTFT Gas Sensors Based on P3HT-ZnO Composite Film and P3HT/ZnO Bilayer Film. Integrated Ferroelectrics, 2014, 153, 65-72.	0.3	4
134	One-pot preparation and applications of self-healing, self-adhesive PAA-PDMS elastomers. Journal of Semiconductors, 2019, 40, 112602.	2.0	4
135	MXene‧ponge Based Highâ€Performance Piezoresistive Sensor for Wearable Biomonitoring and Realâ€Time Tactile Sensing (Small Methods 2/2022). Small Methods, 2022, 6, .	4.6	4
136	Temperatureâ€programmed multicapillary gas chromatograph microcolumn for the analysis of odorous sulfur pollutants. Journal of Separation Science, 2018, 41, 893-898.	1.3	3
137	Room-temperature light-activated chemical sensors for gas monitoring and applications: a review. Journal Physics D: Applied Physics, 2022, 55, 213001.	1.3	3
138	Comparative NH 3 -sensing characteristic studies of PANI/TiO 2 nanocomposite thin films doped with different acids. Proceedings of SPIE, 2008, , .	0.8	2
139	α-sexithiophene based organic thin film transistors as gas sensor. , 2010, , .		2
140	Polyvinylpyrrolidone/reduced graphene oxide nanocomposites thin films coated on quartz crystal microbalance for NO ₂ detection at room temperature. Proceedings of SPIE, 2014, , .	0.8	2
141	Detection of 2,4-dinitrotoluene using hydrogen-bond acidic polymer coated SAW sensor. Science Bulletin, 2014, 59, 2608-2612.	1.7	2
142	The effect of MWCNTs on the performance of \hat{l}_{\pm} -sexithiophene OTFT device and its gas-sensing property. Science China Technological Sciences, 2014, 57, 1101-1108.	2.0	2
143	Facile depositing strategy to fabricate a hetero-affinity hybrid film for improving gas-sensing performance. Nanotechnology, 2021, 32, 205502.	1.3	2
144	Surface modified polysiloxane a sensitive coatings for QCM sensors. Proceedings of SPIE, 2008, , .	0.8	1

#	Article	IF	CITATIONS
145	Pentacene Nano-Particles Film Modified Microstructure Silicon for NH ₃ Gas Sensor Application. Integrated Ferroelectrics, 2014, 152, 113-119.	0.3	1
146	Influence of humidity on CO ₂ gas sensors based on polyetherimide polymer film. Proceedings of SPIE, 2014, , .	0.8	1
147	Enhanced selectivity over a photoresist film and process optimization for reactive ion etching of NiCr. Microelectronic Engineering, 2014, 113, 136-139.	1.1	1
148	UV-enhanced oxygen sensing with tunable ZnO nanorod arrays at room temperature. , 2017, , .		1
149	Drawn a flexible, low-cost, eco-friendly, and multifunctional humidity sensor on paper using carbon ink. , 2020, , .		1
150	Performance enhancement of an organic photodetector enabled by NPB modified hole transport layer. Journal Physics D: Applied Physics, 2022, 55, 234001.	1.3	1
151	MXeneåå&æ°"æ•ææ–™: æœ€æ–°è¿›å±•ä¸Žæœªæ¥æŒ'æ~. Chinese Science Bulletin, 2022, , .	0.4	1
152	Fabrication and NO 2 sensing properties of ChemFET sensors with self-assembly PAN/PSSA sensitive films based on nano-Au surface. , 2008, , .		0
153	In-situ self-assembled polyaniline/carbon nanotubes nanofiber thin films for ammonia gas sensors. Proceedings of SPIE, 2010, , .	0.8	0
154	Thin film transistors based on single-walled carbon nanotubes-polyethylenimine bilayer film for NO $<$ sub $>$ 2 $<$ /sub $>$ gas detection. Proceedings of SPIE, 2014, , .	0.8	0
155	Fabrication of a gas sensor array with micro-wells for VOCs gas sensing based on polymer/carbon nanotube thin films. Proceedings of SPIE, 2014, , .	0.8	0
156	Visible Light-activated Room Temperature NO2 Sensing with Au-ZnO Nanorod Array Thin Films. , 2019, , .		0
157	A Facile Strategy for Low Young's Modulus PDMS Microbeads Enhanced Flexible Capacitive Pressure Sensors (Part. Part. Syst. Charact. 7/2021). Particle and Particle Systems Characterization, 2021, 38, 2170016.	1.2	0
158	Flexible self-powered ammonia sensor based on Ce-ZnO composite film., 2019,,.		0
159	Flexible and high performance ammonia sensor based on self-assembled PANI-TiO2-Au ternary composite film. , 2019, , .		0
160	A Room Temperature-Operating Acetone Gas Sensor Based on the Triboelectric Effect. ECS Meeting Abstracts, 2020, MA2020-01, 2122-2122.	0.0	0
161	All-in-One Wearable Self-Powered Respiratory Sensor Enabled By Contact Electrification. ECS Meeting Abstracts, 2020, MA2020-01, 2411-2411.	0.0	0
162	Enhanced NH3 Sensing Performance of Ti3C2T x Nanosheets Supported By TiO2 Nanoparticles at Room Temperature. ECS Meeting Abstracts, 2020, MA2020-01, 2162-2162.	0.0	O

Huiling Tai

#	Article	IF	CITATIONS
163	Enhanced Sensing Performance of the Palladium Loaded Tin Oxide to Ethylene Gas. ECS Meeting Abstracts, 2020, MA2020-01, 2048-2048.	0.0	0
164	The Room Temperature Gas Sensor Based on Polyaniline/SrGe4O9 Nanocomposites for Ppt-Level NH3 Detection. ECS Meeting Abstracts, 2020, MA2020-01, 2165-2165.	0.0	0
165	Self-Powered Membrane Sensor for Active Nitrogen Dioxide Detection and Respiratory Analysis. ECS Meeting Abstracts, 2020, MA2020-01, 2033-2033.	0.0	0
166	New insights into the controlled growth of hierarchical MoS2 nanospheres. , 2020, , .		0
167	Ultrathin niobium carbide nanosheets for humidity sensing. , 2020, , .		0
168	A flexible piezoresistive pressure sensor with micro-papillae structure for high sensitivity and wide detection range., 2020,,.		0
169	Morphology-modeled chitosan nanoparticles/WS2 nanosheets for advancing the sensing properties of triboelectric acetone sensor. , 2020, , .		0