Ling-Dong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4625043/publications.pdf

Version: 2024-02-01

200 papers

24,762 citations

85 h-index 155 g-index

210 all docs

210 docs citations

times ranked

210

23898 citing authors

#	Article	IF	CITATIONS
1	High-Quality Sodium Rare-Earth Fluoride Nanocrystals:  Controlled Synthesis and Optical Properties. Journal of the American Chemical Society, 2006, 128, 6426-6436.	6.6	1,374
2	Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. Journal of Physical Chemistry B, 2005, 109, 24380-24385.	1.2	1,326
3	Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chemical Reviews, 2015, 115, 10725-10815.	23.0	946
4	Energy transfer in lanthanide upconversion studies for extended optical applications. Chemical Society Reviews, 2015, 44, 1608-1634.	18.7	859
5	A Eu ³⁺ -Eu ²⁺ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 2019, 363, 265-270.	6.0	793
6	Nd ³⁺ -Sensitized Upconversion Nanophosphors: Efficient <i>In Vivo</i> Bioimaging Probes with Minimized Heating Effect. ACS Nano, 2013, 7, 7200-7206.	7.3	786
7	Facile Synthesis for Ordered Mesoporous \hat{I}^3 -Aluminas with High Thermal Stability. Journal of the American Chemical Society, 2008, 130, 3465-3472.	6.6	616
8	Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2013, 135, 5588-5601.	6.6	597
9	Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF ₄ :Yb,Er Core and Core/Shell-Structured Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 13721-13729.	1.5	580
10	Single-Crystalline Iron Oxide Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 4328-4333.	7.2	494
11	Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings. Journal of the American Chemical Society, 2008, 130, 16968-16977.	6.6	438
12	Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods. Nano Letters, 2009, 9, 3896-3903.	4.5	388
13	Luminescent rare earth nanomaterials for bioprobe applications. Dalton Transactions, 2008, , 5687.	1.6	367
14	Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. Journal of the American Chemical Society, 2009, 131, 16350-16351.	6.6	357
15	Paradigms and Challenges for Bioapplication of Rare Earth Upconversion Luminescent Nanoparticles: Small Size and Tunable Emission/Excitation Spectra. Accounts of Chemical Research, 2014, 47, 1001-1009.	7.6	324
16	Engineering of Upconverted Metal–Organic Frameworks for Near-Infrared Light-Triggered Combinational Photodynamic/Chemo-/Immunotherapy against Hypoxic Tumors. Journal of the American Chemical Society, 2020, 142, 3939-3946.	6.6	294
17	Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society, 2011, 133, 1106-1111.	6.6	287
18	Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles. Journal of the American Chemical Society, 2014, 136, 4480-4483.	6.6	257

#	Article	IF	Citations
19	Size- and Phase-Controlled Synthesis of Monodisperse NaYF ₄ :Yb,Er Nanocrystals from a Unique Delayed Nucleation Pathway Monitored with Upconversion Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 13730-13739.	1.5	256
20	A simple route towards tubular ZnO. Chemical Communications, 2002, , 262-263.	2.2	254
21	Size-Dependent Chromaticity in YBO3:Eu Nanocrystals:  Correlation with Microstructure and Site Symmetry. Journal of Physical Chemistry B, 2002, 106, 10610-10617.	1.2	244
22	Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials, 2011, 32, 9059-9067.	5.7	239
23	Versatile Spectral and Lifetime Multiplexing Nanoplatform with Excitation Orthogonalized Upconversion Luminescence. ACS Nano, 2017, 11, 3289-3297.	7.3	237
24	Controlled synthesis and assembly of ceria-based nanomaterials. Journal of Colloid and Interface Science, 2009, 335, 151-167.	5.0	229
25	Luminescenceâ€Driven Reversible Handedness Inversion of Selfâ€Organized Helical Superstructures Enabled by a Novel Nearâ€Infrared Light Nanotransducer. Advanced Materials, 2015, 27, 2065-2069.	11.1	225
26	Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4 : Yb,Tm nanocrystals. Nanoscale, 2010, 2, 953.	2.8	221
27	Hierarchical Assembly of SnO2Nanorod Arrays on α-Fe2O3Nanotubes: A Case of Interfacial Lattice Compatibility. Journal of the American Chemical Society, 2005, 127, 13492-13493.	6.6	212
28	Efficient Energy Transfer in Monodisperse Eu-Doped ZnO Nanocrystals Synthesized from Metal Acetylacetonates in High-Boiling Solvents. Journal of Physical Chemistry C, 2008, 112, 12234-12241.	1.5	212
29	Triple-functional core–shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. Nanoscale, 2012, 4, 4611.	2.8	209
30	Porous Singleâ€Crystalline Palladium Nanoparticles with High Catalytic Activities. Angewandte Chemie - International Edition, 2012, 51, 4872-4876.	7.2	206
31	Basic understanding of the lanthanide related upconversion emissions. Nanoscale, 2013, 5, 5703.	2.8	203
32	Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method. Chemical Communications, 2009, , 4393.	2.2	199
33	Rareâ€Earth Nanoparticles with Enhanced Upconversion Emission and Suppressed Rareâ€Earthâ€Ion Leakage. Chemistry - A European Journal, 2012, 18, 5558-5564.	1.7	195
34	Plasmon–molecule interactions. Nano Today, 2010, 5, 494-505.	6.2	193
35	Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout. Advanced Materials, 2010, 22, 633-637.	11.1	192
36	Thermally Stable Pt/CeO ₂ Hetero-Nanocomposites with High Catalytic Activity. Journal of the American Chemical Society, 2010, 132, 4998-4999.	6.6	187

#	Article	IF	Citations
37	Glutathione- and Cysteine-Induced Transverse Overgrowth on Gold Nanorods. Journal of the American Chemical Society, 2007, 129, 6402-6404.	6.6	178
38	Fluorescence intensity and color purity improvement in nanosized YBO3:Eu. Applied Physics Letters, 2002, 80, 1447-1449.	1.5	177
39	Time–Temperature Indicator for Perishable Products Based on Kinetically Programmable Ag Overgrowth on Au Nanorods. ACS Nano, 2013, 7, 4561-4568.	7.3	173
40	Controlled-Synthesis, Self-Assembly Behavior, and Surface-Dependent Optical Properties of High-Quality Rare-Earth Oxide Nanocrystals. Chemistry of Materials, 2007, 19, 18-27.	3.2	171
41	Ordered Mesoporous Ce1-xZrxO2Solid Solutions with Crystalline Walls. Journal of the American Chemical Society, 2007, 129, 6698-6699.	6.6	171
42	Efficient Tailoring of Upconversion Selectivity by Engineering Local Structure of Lanthanides in Na _{<i>x</i>} REF _{3+<i>x</i>} Nanocrystals. Journal of the American Chemical Society, 2015, 137, 6569-6576.	6.6	154
43	ZnO nanowires fabricated by a convenient route. New Journal of Chemistry, 2002, 26, 33-34.	1.4	153
44	Biocompatible Bright YVO ₄ :Eu Nanoparticles as Versatile Optical Bioprobes. Advanced Functional Materials, 2010, 20, 3708-3714.	7.8	151
45	Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process. Coordination Chemistry Reviews, 2010, 254, 1038-1053.	9.5	150
46	Heterodimers Made of Upconversion Nanoparticles and Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 13804-13810.	6.6	147
47	Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chemical Communications, 2007, , 1816 .	2.2	146
48	Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals. Applied Physics Letters, 2004, 84, 5305-5307.	1.5	142
49	Luminescent properties of Li+ doped nanosized Y2O3:Eu. Solid State Communications, 2001, 119, 393-396.	0.9	139
50	Selective Synthesis of Monazite- and Zircon-type LaVO4Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 3284-3290.	1.2	139
51	Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale, 2014, 6, 4345-4351.	2.8	139
52	Direct Identification of Active Surface Species for the Water–Gas Shift Reaction on a Gold–Ceria Catalyst. Journal of the American Chemical Society, 2019, 141, 4613-4623.	6.6	139
53	A Versatile Imaging and Therapeutic Platform Based on Dual-Band Luminescent Lanthanide Nanoparticles toward Tumor Metastasis Inhibition. ACS Nano, 2016, 10, 2766-2773.	7.3	131
54	Luminescent Monodisperse Nanocrystals of Lanthanide Oxyfluorides Synthesized from Trifluoroacetate Precursors in High-Boiling Solvents. Journal of Physical Chemistry C, 2008, 112, 405-415.	1.5	130

#	Article	IF	CITATIONS
55	Growth of Gold Nanorods and Bipyramids Using CTEAB Surfactant. Journal of Physical Chemistry B, 2006, 110, 16377-16383.	1.2	127
56	Upconversion of Rare Earth Nanomaterials. Annual Review of Physical Chemistry, 2015, 66, 619-642.	4.8	127
57	Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals. Applied Physics Letters, 2003, 82, 3511-3513.	1.5	119
58	Plasmon Coupling in Clusters Composed of Twoâ€Dimensionally Ordered Gold Nanocubes. Small, 2009, 5, 2111-2119.	5.2	119
59	Highly Luminescent Self-Organized Sub-2-nm EuOF Nanowires. Journal of the American Chemical Society, 2009, 131, 16364-16365.	6.6	119
60	Near-Infrared to Visible Upconversion in Er ³⁺ and Yb ³⁺ Codoped Lu ₂ O ₃ Nanocrystals: Enhanced Red Color Upconversion and Three-Photon Process in Green Color Upconversion. Journal of Physical Chemistry C, 2009, 113, 4413-4418.	1.5	119
61	Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties. Journal of Solid State Chemistry, 2003, 175, 245-251.	1.4	118
62	Ordered Nanosheet-Based YBO3:Eu3+Assemblies:Â Synthesis and Tunable Luminescent Properties. Journal of Physical Chemistry B, 2004, 108, 3387-3390.	1.2	115
63	Recent Progress in Wellâ€Controlled Synthesis of Ceriaâ€Based Nanocatalysts towards Enhanced Catalytic Performance. Advanced Energy Materials, 2016, 6, 1600501.	10.2	115
64	Room Temperature Ionic Liquids Assisted Green Synthesis of Nanocrystalline Porous SnO ₂ and Their Gas Sensor Behaviors. Crystal Growth and Design, 2008, 8, 4165-4172.	1.4	114
65	Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors. Dalton Transactions, 2009, , 8574.	1.6	113
66	Photon energy upconversion through thermal radiation with the power efficiency reaching 16%. Nature Communications, 2014, 5, 5669.	5.8	111
67	Orderly Aligned and Highly Luminescent Monodisperse Rare-Earth Orthophosphate Nanocrystals Synthesized by a Limited Anion-Exchange Reaction. Chemistry of Materials, 2007, 19, 4514-4522.	3.2	109
68	Fabrication of size controllable YVO4 nanoparticles via microemulsion-mediated synthetic process. Solid State Communications, 2002, 124, 35-38.	0.9	108
69	Rare earth upconversion nanophosphors: synthesis, functionalization and application as biolabels and energy transfer donors. Journal of Rare Earths, 2010, 28, 807-819.	2.5	105
70	Sustainable and Facile Route to Nearly Monodisperse Spherical Aggregates of CeO ₂ Nanocrystals with Ionic Liquids and Their Catalytic Activities for CO Oxidation. Journal of Physical Chemistry C, 2008, 112, 18405-18411.	1.5	101
71	Superparamagnetic and upconversion emitting Fe3O4/NaYF4 : Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy. Chemical Communications, 2010, 46, 5731.	2.2	101
72	Engineering the defect state and reducibility of ceria based nanoparticles for improved anti-oxidation performance. Nanoscale, 2015, 7, 13981-13990.	2.8	100

#	Article	IF	Citations
73	Compositionâ€Graded Cesium Lead Halide Perovskite Nanowires with Tunable Dualâ€Color Lasing Performance. Advanced Materials, 2018, 30, e1800596.	11.1	99
74	Iron Oxide Tube-in-Tube Nanostructures. Journal of Physical Chemistry C, 2007, 111, 13022-13027.	1.5	98
75	Improving Hematite's Solar Water Splitting Efficiency by Incorporating Rare-Earth Upconversion Nanomaterials. Journal of Physical Chemistry Letters, 2012, 3, 3188-3192.	2.1	98
76	Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method. Solid State Communications, 2002, 124, 45-48.	0.9	95
77	Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria. Nature Communications, 2020, 11, 4008.	5.8	95
78	One-Step Synthesis of Large-Aspect-Ratio Single-Crystalline Gold Nanorods by Using CTPAB and CTBAB Surfactants. Chemistry - A European Journal, 2007, 13, 2929-2936.	1.7	94
79	Heteroepitaxial Growth of Core–Shell and Core–Multishell Nanocrystals Composed of Palladium and Gold. Small, 2010, 6, 2566-2575.	5.2	94
80	Minimizing the Heat Effect of Photodynamic Therapy Based on Inorganic Nanocomposites Mediated by 808 nm Nearâ€nfrared Light. Small, 2017, 13, 1700038.	5.2	94
81	Rare earth activated nanosized oxide phosphors: synthesis and optical properties. Journal of Luminescence, 2000, 87-89, 447-450.	1.5	92
82	lonic Liquid-Based Route to Spherical NaYF4 Nanoclusters with the Assistance of Microwave Radiation and Their Multicolor Upconversion Luminescence. Langmuir, 2010, 26, 8797-8803.	1.6	91
83	Thickness Control Produces Gold Nanoplates with Their Plasmon in the Visible and Nearâ€Infrared Regions. Advanced Optical Materials, 2016, 4, 76-85.	3.6	91
84	Plasmonic Percolation: Plasmon-Manifested Dielectric-to-Metal Transition. ACS Nano, 2012, 6, 7162-7171.	7.3	89
85	Atomically Efficient Synthesis of Self-assembled Monodisperse and Ultrathin Lanthanide Oxychloride Nanoplates. Journal of the American Chemical Society, 2009, 131, 3162-3163.	6.6	86
86	Attachment-Driven Morphology Evolvement of Rectangular ZnO Nanowires. Journal of Physical Chemistry B, 2005, 109, 8786-8790.	1.2	85
87	Size-controllable one-dimensinal SnO2 nanocrystals: synthesis, growth mechanism, and gas sensing property. Physical Chemistry Chemical Physics, 2006, 8, 4874.	1.3	85
88	Multifunctional upconversion–nanoparticles–trismethylpyridylporphyrin–fullerene nanocomposite: a near-infrared light-triggered theranostic platform for imaging-guided photodynamic therapy. NPG Asia Materials, 2015, 7, e205-e205.	3.8	84
89	Gd-Dots with Strong Ligand–Water Interaction for Ultrasensitive Magnetic Resonance Renography. ACS Nano, 2017, 11, 3642-3650.	7. 3	84
90	Uniform Alkaline Earth Fluoride Nanocrystals with Diverse Shapes Grown from Thermolysis of Metal Trifluoroacetates in Hot Surfactant Solutions. Crystal Growth and Design, 2009, 9, 2013-2019.	1.4	83

#	Article	IF	Citations
91	Selective Cation Exchange Enabled Growth of Lanthanide Core/Shell Nanoparticles with Dissimilar Structure. Journal of the American Chemical Society, 2017, 139, 18492-18495.	6.6	83
92	Hierarchical Construction of ZnO Architectures Promoted by Heterogeneous Nucleation. Crystal Growth and Design, 2008, 8, 3609-3615.	1.4	81
93	Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. Chemical Communications, 2011, 47, 8109.	2.2	81
94	Luminescent Properties in Relation to Controllable Phase and Morphology of LuBO3:Eu3+ Nano/Microcrystals Synthesized by Hydrothermal Approach. Chemistry of Materials, 2009, 21, 468-475.	3.2	80
95	Acetate-Mediated Growth of Drumlike YBO3:Eu3+Crystals. Crystal Growth and Design, 2004, 4, 517-520.	1.4	73
96	Shape Evolution of One-Dimensional Single-Crystalline ZnO Nanostructures in a Microemulsion System. Crystal Growth and Design, 2004, 4, 309-313.	1.4	67
97	Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorganic Chemistry Frontiers, 2018, 5, 386-393.	3.0	67
98	Size dependence of luminescent properties for hexagonal YBO3:Eu nanocrystals in the vacuum ultraviolet region. Journal of Applied Physics, 2003, 93, 9783-9788.	1.1	66
99	Resonance Energy Transfer in Steady-State and Time-Decay Fluoro-Immunoassays for Lanthanide Nanoparticles Based on Biotin and Avidin Affinity. Journal of Physical Chemistry C, 2008, 112, 6589-6593.	1.5	66
100	Size-dependent microstructure and europium site preference influence fluorescent properties of Eu3+-doped Ca10(PO4)6(OH)2 nanocrystal. Journal of Luminescence, 2008, 128, 428-436.	1.5	65
101	NIR Ratiometric Luminescence Detection of pH Fluctuation in Living Cells with Hemicyanine Derivative-Assembled Upconversion Nanophosphors. Analytical Chemistry, 2017, 89, 8863-8869.	3.2	65
102	Correlation between Size-Dependent Luminescent Properties and Local Structure around Eu3+ Ions in YBO3:Eu Nanocrystals:  An XAFS Study. Chemistry of Materials, 2003, 15, 3011-3017.	3.2	64
103	Reversible luminescence switching of NaYF4:Yb,Er nanoparticles with controlled assembly of gold nanoparticles. Chemical Communications, 2009, , 2547.	2.2	63
104	Monazite and Zircon Type LaVO ₄ :Eu Nanocrystals – Synthesis, Luminescent Properties, and Spectroscopic Identification of the Eu ³⁺ Sites. European Journal of Inorganic Chemistry, 2010, 2010, 2626-2635.	1.0	63
105	Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nature Nanotechnology, 2022, 17, 524-530.	15.6	63
106	Colour modification action of an upconversion photonic crystal. Chemical Communications, 2009, , 6616.	2.2	62
107	Double shelled hollow nanospheres with dual noble metal nanoparticle encapsulation for enhanced catalytic application. Nanoscale, 2013, 5, 9747.	2.8	62
108	Local Structure Engineering in Lanthanide-Doped Nanocrystals for Tunable Upconversion Emissions. Journal of the American Chemical Society, 2021, 143, 20546-20561.	6.6	62

#	Article	IF	CITATIONS
109	Solidâ€toâ€Hollow Singleâ€Particle Manipulation of a Selfâ€Assembled Luminescent NaYF ₄ :Yb,Er Nanocrystal Monolayer by Electronâ€Beam Lithography. Small, 2009, 5, 2057-2060.	5.2	59
110	An Extraâ€Broadband VISâ€NIR Emitting Phosphor toward Multifunctional LED Applications. Advanced Functional Materials, 2022, 32, .	7.8	59
111	Single-Crystalline and Near-Monodispersed NaMF3 (M=Mn, Co, Ni, Mg) and LiMAlF6 (M=Ca, Sr) Nanocrystals from Cothermolysis of Multiple Trifluoroacetates in Solution. Chemistry - an Asian Journal, 2007, 2, 965-974.	1.7	57
112	Nanobubble-embedded inorganic 808Ânm excited upconversion nanocomposites for tumor multiple imaging and treatment. Chemical Science, 2018, 9, 3141-3151.	3.7	53
113	Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films. Journal of Physical Chemistry C, 2008, 112, 18895-18903.	1.5	52
114	Photon upconversion in Yb ³⁺ â€"Tb ³⁺ and Yb ³⁺ â€"Eu ³⁺ activated core/shell nanoparticles with dual-band excitation. Journal of Materials Chemistry C, 2016, 4, 4186-4192.	2.7	52
115	Scalable Direct Writing of Lanthanide-Doped KMnF ₃ Perovskite Nanowires into Aligned Arrays with Polarized Up-Conversion Emission. Nano Letters, 2018, 18, 2964-2969.	4.5	52
116	Branched Gold Nanochains Facilitated by Polyvinylpyrrolidone and their SERS Effects on <i>p</i> -Aminothiophenol. Journal of Physical Chemistry C, 2008, 112, 16011-16016.	1.5	51
117	Upconversion emission studies of single particles. Nano Today, 2020, 35, 100956.	6.2	50
118	SnO2–ZnSn(OH)6: a novel binary affinity probe for global phosphopeptide detection. Chemical Communications, 2013, 49, 1762.	2.2	48
119	Synthesis and size dependent luminescent properties of hexagonal (Y,Gd)BO3â^¶Eu nanocrystals. Journal of Materials Chemistry, 2002, 12, 3665-3670.	6.7	45
120	Fabrication and Characterization of Rare-Earth-Doped Nanostructures on Surfaces. ACS Nano, 2011, 5, 6539-6545.	7.3	44
121	Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging. Nanoscale, 2017, 9, 4660-4664.	2.8	44
122	Nanophotonic energy storage in upconversion nanoparticles. Nano Energy, 2019, 56, 473-481.	8.2	43
123	Upconverted/downshifted NaLnF4 and metal-organic framework heterostructures boosting NIR-II imaging-guided photodynamic immunotherapy toward tumors. Nano Today, 2022, 43, 101439.	6.2	43
124	Structure transition and enhanced photoluminescence of Gd $2\hat{a}^{\circ}x Y \times O 3$: Eu nanocrystals. Journal of Solid State Chemistry, 2003, 171, 304-307.	1.4	42
125	Fundamental View of Electronic Structures of \hat{l}^2 -NaYF ₄ , \hat{l}^2 -NaGdF ₄ , and \hat{l}^2 -NaLuF ₄ . Journal of Physical Chemistry C, 2016, 120, 18858-18870.	1.5	42
126	Novel TiO2–Pt@SiO2 nanocomposites with high photocatalytic activity. Nanoscale, 2012, 4, 3242.	2.8	41

#	Article	IF	Citations
127	Intrinsically Active Surface in a Ptſſ³-Mo ₂ N Catalyst for the Water–Gas Shift Reaction: Molybdenum Nitride or Molybdenum Oxide?. Journal of the American Chemical Society, 2020, 142, 13362-13371.	6.6	41
128	Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Research, 2020, 13, 2044-2055.	5 . 8	39
129	Green Facile Scalable Synthesis of Titania/Carbon Nanocomposites: New Use of Old Dental Resins. ACS Applied Materials & Dental Resins & Dental Resin	4.0	38
130	Allâ€Inorganic Manganeseâ€Based CsMnCl ₃ Nanocrystals for Xâ€Ray Imaging. Advanced Science, 2022, 9, e2201354.	5.6	37
131	Facile Scalable Synthesis of TiO ₂ /Carbon Nanohybrids with Ultrasmall TiO ₂ Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Applied Materials & Diterfaces, 2015, 7, 24247-24255.	4.0	36
132	Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. ACS Applied Materials & Emp; Interfaces, 2016, 8, 13982-13992.	4.0	36
133	Pt-embedded-CeO ₂ hollow spheres for enhancing CO oxidation performance. Materials Chemistry Frontiers, 2017, 1, 1754-1763.	3.2	36
134	An overview of rare earth coupled lead halide perovskite and its application in photovoltaics and light emitting devices. Progress in Materials Science, 2021, 120, 100737.	16.0	35
135	PAA-capped GdF3 nanoplates as dual-mode MRI and CT contrast agents. Science Bulletin, 2015, 60, 1092-1100.	4.3	34
136	TbF3 nanoparticles as dual-mode contrast agents for ultrahigh field magnetic resonance imaging and X-ray computed tomography. Nano Research, 2016 , 9 , $1135-1147$.	5 . 8	33
137	Nanorods-assembled CeVO4 hollow spheres as active catalyst for oxidative dehydrogenation of propane. Materials Research Bulletin, 2013, 48, 1122-1127.	2.7	32
138	Hydrophilic CeO ₂ nanocubes protect pancreatic β-cell line INS-1 from H ₂ O ₂ -induced oxidative stress. Nanoscale, 2016, 8, 7923-7932.	2.8	32
139	Networking State of Ytterbium lons Probing the Origin of Luminescence Quenching and Activation in Nanocrystals. Advanced Science, 2021, 8, 2003325.	5 . 6	31
140	Fluorescent-magnetic nanocrystals: synthesis and property of YPxV1â^'xO4:Eu@GdPO4 core/shell structure. Nanoscale, 2011, 3, 1977.	2.8	30
141	Pt-Embedded CuO _{<i>x</i>} –CeO ₂ Multicore–Shell Composites: Interfacial Redox Reaction-Directed Synthesis and Composition-Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition-Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition Dependent Performance for CO Oxidation. ACS Applied Materials & Directed Synthesis and Composition Dependent Performance for CO Oxidation Dependent Per	4.0	29
142	Selective Heteroepitaxial Nanocrystal Growth of Rare Earth Fluorides on Sodium Chloride: Synthesis and Density Functional Calculations. Angewandte Chemie - International Edition, 2012, 51, 8796-8799.	7.2	28
143	Lanthanide-Doped Upconversion Nanoparticles for Super-Resolution Microscopy. Frontiers in Chemistry, 2020, 8, 619377.	1.8	28
144	Design and validation of a new ratiometric intracellular pH imaging probe using lanthanide-doped upconverting nanoparticles. Dalton Transactions, 2017, 46, 13957-13965.	1.6	27

#	Article	IF	Citations
145	Site selective excitation in La2O3:Eu3+ nanoparticles. Journal of Luminescence, 2007, 122-123, 844-846.	1.5	26
146	Luminescence Resonance Energy Transfer Sensors Based on the Assemblies of Oppositely Charged Lanthanide/Gold Nanoparticles in Aqueous Solution. Chemistry - an Asian Journal, 2008, 3, 1857-1864.	1.7	26
147	Role of Surface Ligands in the Nanoparticle Assemblies: A Case Study of Regularly Shaped Colloidal Crystals Composed of Sodium Rare Earth Fluoride. Langmuir, 2011, 27, 3343-3347.	1.6	23
148	Photoswitchable Upconversion Luminescence of Rareâ€Earth Nanophosphors with Covalently Grafted Spiropyran. Chemistry - an Asian Journal, 2012, 7, 2225-2229.	1.7	23
149	Optical properties of ZnO nanoplatelets and rectangular cross-sectioned nanowires. Chemical Physics Letters, 2006, 422, 46-50.	1.2	22
150	Experimental and Simulation Insights into Local Structure and Luminescence Evolution in Eu ³⁺ -Doped Nanocrystals under High Pressure. Journal of Physical Chemistry Letters, 2020, 11, 3515-3520.	2.1	20
151	Upconversion Fluorescence Resonance Energy Transfer Aptasensors for H5N1 Influenza Virus Detection. ACS Omega, 2021, 6, 15236-15245.	1.6	19
152	Mesostructured Hybrids Containing Potential Donors and Acceptors with Molecular-Scale and Meso-Scale Segregation and Ordering: Toward the Development of Smart Materials through Hierarchical Self-Assembly. Chemistry of Materials, 2009, 21, 4589-4597.	3.2	18
153	Heterogeneous synergistic catalysis by Ru-RuO x nanoparticles for Se–Se bond activation. Nano Research, 2017, 10, 922-932.	5.8	18
154	Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 14106-14113.	5.2	18
155	Synthesis and optical properties of nanosized CdS prepared in a quaternary CTAB/nhexanol/n-heptane/water reverse micelle. Science Bulletin, 2001, 46, 1873-1877.	1.7	17
156	Desilylation Induced by Metal Fluoride Nanocrystals Enables Cleavage Chemistry In Vivo. Journal of the American Chemical Society, 2021, 143, 2250-2255.	6.6	16
157	Luminescence resonance energy transfer based on \hat{l}^2 -NaYF4:Yb,Er nanoparticles and TRITC dye. Science in China Series B: Chemistry, 2009, 52, 1590-1595.	0.8	15
158	Self-Assembled Ferromagnetic Monodisperse Manganese Oxide Nanoplates Synthesized by a Modified Nonhydrolytic Approach. Journal of Physical Chemistry C, 2009, 113, 6521-6528.	1.5	15
159	A-Site Cation Effect on Growth Thermodynamics and Photoconductive Properties in Ultrapure Lead lodine Perovskite Monocrystalline Wires. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25985-25994.	4.0	14
160	Moderate oxidation levels of Ru nanoparticles enhance molecular oxygen activation for cross-dehydrogenative-coupling reactions via single electron transfer. RSC Advances, 2017, 7, 33078-33085.	1.7	14
161	Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides. Nano Research, 2019, 12, 889-896.	5.8	14
162	Highly Polarized Upconversion Emissions from Lanthanide-Doped LiYF ₄ Crystals as Spatial Orientation Indicators. Journal of Physical Chemistry Letters, 2021, 12, 11288-11294.	2.1	14

#	Article	IF	Citations
163	Investigations on multi-photon emissions of Nd 3+ -sensitized core/shell nanoparticles. Journal of Rare Earths, 2017, 35, 1-6.	2.5	13
164	Construction of NaREF4-based binary and bilayer nanocrystal assemblies. Chemical Communications, 2013, 49, 5799.	2.2	12
165	Noble metal plasmonic nanostructure related chromisms. Inorganic Chemistry Frontiers, 2016, 3, 203-217.	3.0	12
166	Unravelling the energy transfer of Er ³⁺ -self-sensitized upconversion in Er ³⁺ â€"Yb ³⁺ â€"Er ³⁺ clustered core@shell nanoparticles. Nanoscale, 2017, 9, 18490-18497.	2.8	10
167	Interfacial growth behavior of SnO2 nanorods on {112Ì,,0} and {101Ì,,0} facets of α-Fe2O3. Nanoscale, 2012, 4, 5092.	2.8	8
168	Generalized Synthesis of Mesoporous Rare Earth Oxide Thin Films through Amphiphilic Ionic Block Copolymer Templating. European Journal of Inorganic Chemistry, 2013, 2013, 1251-1257.	1.0	8
169	Template-free synthesis of titania architectures with controlled morphology evolution. Journal of Materials Science, 2016, 51, 3941-3956.	1.7	8
170	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie - International Edition, 2021, 60, 1212-1219.	7.2	8
171	Solvothermal synthesis of hierarchical Eu ₂ O ₃ nanostructures templated by PS-b-PMAA: morphology control via simple variation of water contents. Journal of Materials Chemistry A, 2015, 3, 5789-5793.	5.2	7
172	Interface formation energy, bonding, energy band alignment in α-NaYF 4 related core shell models: For future multi-layer core shell luminescence materials. Journal of Rare Earths, 2017, 35, 315-334.	2.5	7
173	Lanthanide Upconverted Microlasing: Microlasing Spanning Full Visible Spectrum to Nearâ€Infrared under Low Power, CW Pumping. Small, 2021, 17, e2103140.	5.2	7
174	Carboxylic-containing copolymer as template to prepare CdS, ZnS and doped nanoparticles. Science in China Series B: Chemistry, 2001, 44, 23-30.	0.8	6
175	Measuring Activation and Luminescence Time Scales of Upconverting NaYF ₄ :Yb,Er Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 23780-23789.	1.5	6
176	Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids. Journal of Colloid and Interface Science, 2016, 469, 242-256.	5.0	5
177	Self-sacrificed two-dimensional REO(CH ₃ COO) template-assisted synthesis of ultrathin rare earth oxide nanoplates. Inorganic Chemistry Frontiers, 2017, 4, 1182-1186.	3.0	5
178	Phase segregation enabled scandium fluoride–lanthanide fluoride Janus nanoparticles. Inorganic Chemistry Frontiers, 2018, 5, 1800-1804.	3.0	5
179	Surface state analysis of YVO4:Eu3+ nanocrystals by electrostatic point charge model. Journal of Luminescence, 2007, 122-123, 847-850.	1.5	4
180	Sol–gel synthesis of nanosized Y3Sc2.5Ga2.5O12 garnet. Mendeleev Communications, 2008, 18, 251-252.	0.6	4

#	Article	IF	CITATIONS
181	Microscopic studies of a SnO2/l±-Fe2O3 architectural nanocomposite using Mössbauer spectroscopic and magnetic measurements. Journal of Solid State Chemistry, 2008, 181, 3283-3286.	1.4	4
182	Biocompatible Bright YVO4:Eu Nanoparticles as Versatile Optical Bioprobes. Advanced Functional Materials, 2010, 20, 3707-3707.	7.8	4
183	<i>In situ</i> epitaxial growth of GdF ₃ on NaGdF ₄ :Yb,Er nanoparticles. Inorganic Chemistry Frontiers, 2017, 4, 2119-2125.	3.0	4
184	Improvement in the stability of î³-CsPbI ₃ nanowires enabled by lattice immobilization through the Pb–O anchor in SBA-15. Inorganic Chemistry Frontiers, 2020, 7, 4572-4579.	3.0	4
185	Lanthanide Nanoparticles. Fundamental Theories of Physics, 2016, , 301-335.	0.1	3
186	Composition-tuned oxidation levels of Pt–Re bimetallic nanoparticles for the etherification of allylic alcohols. Nano Research, 2018, 11, 5902-5912.	5.8	3
187	Crystallization of Gd ₂ O ₃ nanoparticles: evolution of the microstructure <i>via</i>) electron-beam manipulation. Nanoscale, 2019, 11, 14952-14958.	2.8	2
188	Preparation of CdS/ZnO Core/shell Structured Nanoparticles by Hydrothermal Method. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	1
189	Single-Crystalline Iron Oxide Nanotubes ChemInform, 2005, 36, no.	0.1	1
190	Functional-template directed self-assembly (FTDSA) of mesostructured organic-inorganic hybrid materials. Science in China Series B: Chemistry, 2009, 52, 1759-1768.	0.8	1
191	TWO-DIMENSIONAL AND THREE-DIMENSIONAL CERIA-BASED NANOARCHITECTURES. Catalytic Science Series, 2013, , 295-359.	0.6	1
192	Ceria-Based Nanocatalysts: Recent Progress in Well-Controlled Synthesis of Ceria-Based Nanocatalysts towards Enhanced Catalytic Performance (Adv. Energy Mater. 17/2016). Advanced Energy Materials, 2016, 6, .	10.2	1
193	Control of ZnO Morhpology by Solution Route. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	0
194	Ordered Nanosheet-Based YBO3:Eu3+ Assemblies: Synthesis and Tunable Luminescent Properties ChemInform, 2004, 35, no.	0.1	0
195	Selective Synthesis of Monazite- and Zircon-Type LaVO4 Nanocrystals ChemInform, 2005, 36, no.	0.1	0
196	Assembly of upconversion NaREF <inf>4</inf> nanocrystals., 2010,,.		0
197	Rare Earth Based Anisotropic Nanomaterials: Synthesis, Assembly, and Applications. Nanoscience and Technology, 2015, , 157-208.	1.5	0
198	Photodynamic Therapy: Minimizing the Heat Effect of Photodynamic Therapy Based on Inorganic Nanocomposites Mediated by 808 nm Nearâ€Infrared Light (Small 21/2017). Small, 2017, 13, .	5.2	0

#	Article	IF	CITATIONS
199	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie, 2021, 133, 1232-1239.	1.6	O

200 An Extraâ€Broadband VISâ€NIR Emitting Phosphor toward Multifunctional LED Applications (Adv. Funct.) Tj ETQq0,00 rgBT /Overlock 1