

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4624747/publications.pdf Version: 2024-02-01

V7Hr

#	Article	IF	CITATIONS
1	Experimental and Numerical Study of the Effect of High Steam Concentration on the Oxidation of Methane and Ammonia during Oxy-Steam Combustion. Energy & Fuels, 2016, 30, 6799-6807.	5.1	23
2	Experimental and Numerical Study of the Effects of Steam Addition on NO Formation during Methane and Ammonia Oxy-Fuel Combustion. Energy & Fuels, 2017, 31, 10093-10100.	5.1	23
3	Effect of Exhaust Gas Recirculation and NO on Ignition Delay Times of Iso-octane in a Rapid Compression Machine. Energy & Fuels, 2020, 34, 8788-8795.	5.1	16
4	Comparison of the Reburning Chemistry in O ₂ /N ₂ , O ₂ /CO ₂ , and O ₂ /H ₂ O Atmospheres. Energy & Fuels, 2017, 31, 11404-11412.	5.1	12
5	Effect of oxygen atom precursors addition on LTC-affected detonation in \$\${hbox {DME}}{-}{hbox {O}}_{2}{-}{hbox {CO}}_{2}\$\$ mixtures. Shock Waves, 2020, 30, 799-807.	1.9	12
6	Effect of the reactor model on steady detonation modeling. Shock Waves, 2021, 31, 323-335.	1.9	11
7	Comparison of the characteristics and mechanism of CO formation in O2/N2, O2/CO2 and O2/H2O atmospheres. Energy, 2017, 141, 1429-1438.	8.8	10
8	The characteristics and mechanism of NO formation during pyridine oxidation in O2/N2 and O2/CO2 atmospheres. Energy, 2019, 187, 115954.	8.8	10
9	Effect of 2-step energy release on direct detonation initiation by a point energy source in a rich H2–NO2/N2O4 mixture. Combustion and Flame, 2020, 222, 317-325.	5.2	10
10	Current status of the high-temperature kinetic models of silane: Part I. Pyrolysis. Combustion and Flame, 2021, 227, 526-537.	5.2	10
11	Effect of volumetric expansion on shock-induced ignition of H2–NO2/N2O4 mixtures. Combustion and Flame, 2020, 215, 425-436.	5.2	9
12	Effect of hydroxyl radical precursor addition on LTC-affected detonation in DME–\$\$hbox {O}_{{2}}\$\$a€"\$\$hbox {CO}_{{2}}\$\$ mixtures. Shock Waves, 2020, 30, 789-798.	1.9	7
13	Combustion of silane-nitrous oxide-argon mixtures: Analysis of laminar flame propagation and condensed products. Proceedings of the Combustion Institute, 2021, 38, 2235-2245.	3.9	7
14	Current status of the high-temperature kinetic models of silane: Part II. Oxidation. Combustion and Flame, 2021, 227, 538-549.	5.2	5
15	A shock tube and modeling study on ignition delay times of pyridine under O2/CO2 atmospheres at elevated pressures. Proceedings of the Combustion Institute, 2021, 38, 5475-5484.	3.9	3