Stefan Liebner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4624665/publications.pdf

Version: 2024-02-01

70 7,112 40 65
papers citations h-index g-index

73 73 73 9299
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Developmental regulation of barrier―and nonâ€barrier blood vessels in the CNS. Journal of Internal Medicine, 2022, 292, 31-46.	6.0	27
2	Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science, 2022, 375, eabm4459.	12.6	67
3	The splicingâ€regulatory lncRNA NTRAS sustains vascular integrity. EMBO Reports, 2022, , e54157.	4.5	2
4	Role of the soluble epoxide hydrolase in the hair follicle stem cell homeostasis and hair growth. Pflugers Archiv European Journal of Physiology, 2022, 474, 1021-1035.	2.8	1
5	Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood–brain barrier in acute ischemic stroke. Acta Neuropathologica, 2022, 144, 305-337.	7.7	37
6	Tight junctions in the bloodâ€"brain barrier promote edema formation and infarct size in stroke â€" Ambivalent effects of sealing proteins. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 132-145.	4.3	58
7	Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Progress in Neurobiology, 2021, 199, 101937.	5.7	68
8	Structure and Function of the Blood–Brain Barrier (BBB). Handbook of Experimental Pharmacology, 2020, , 3-31.	1.8	34
9	Norrin restores blood-retinal barrier properties after vascular endothelial growth factor–induced permeability. Journal of Biological Chemistry, 2020, 295, 4647-4660.	3.4	28
10	Low wnt/ \hat{l}^2 -catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. ELife, 2019, 8, .	6.0	60
11	Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathologica, 2018, 135, 311-336.	7.7	543
12	The Fountain of Youth: It's All in Our Veins. Neuron, 2018, 100, 9-11.	8.1	1
13	Rhodocetin- $\hat{l}\pm\hat{l}^2$ selectively breaks the endothelial barrier of the tumor vasculature in HT1080 fibrosarcoma and A431 epidermoid carcinoma tumor models. Oncotarget, 2018, 9, 22406-22422.	1.8	6
14	Pericytes/vessel-associated mural cells (VAMCs) are the major source of key epithelial-mesenchymal transition (EMT) factors SLUG and TWIST in human glioma. Oncotarget, 2018, 9, 24041-24053.	1.8	8
15	Blood Vessels in the Brain: A Signaling Hub in Brain Tumor Inflammation. , 2017, , 253-277.		2
16	Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D. Cardiovascular Research, 2017, 113, 681-691.	3.8	37
17	Personalized translational epilepsy research $\hat{a}\in$ " Novel approaches and future perspectives. Epilepsy and Behavior, 2017, 76, 7-12.	1.7	14
18	Personalized translational epilepsy research $\hat{a}\in$ " Novel approaches and future perspectives. Epilepsy and Behavior, 2017, 76, 13-18.	1.7	26

#	Article	IF	CITATIONS
19	Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2471-2484.	4.3	12
20	Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature, 2017, 552, 248-252.	27.8	113
21	Blood-Brain Barrier Breakdown Determines Differential Therapeutic Outcome in Genetically Diverse Forms of Medulloblastoma. Cancer Cell, 2016, 29, 427-429.	16.8	10
22	\hat{l}^2 -Catenin Is Required for Endothelial Cyp1b1 Regulation Influencing Metabolic Barrier Function. Journal of Neuroscience, 2016, 36, 8921-8935.	3.6	37
23	BACE-1 is expressedÂin the blood–brain barrier endothelium and is upregulated in a murine model of Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1281-1294.	4.3	53
24	Angiopoietin-2-induced blood–brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathologica, 2016, 131, 753-773.	7.7	120
25	Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups. PLoS ONE, 2015, 10, e0136221.	2.5	14
26	$\hat{l}^2\text{-Catenin-Gli1}$ interaction regulates proliferation and tumor growth in medulloblastoma. Molecular Cancer, 2015, 14, 17.	19.2	51
27	<scp>P</scp> aired box gene 8 (<scp>PAX8</scp>) expression is associated with sonic hedgehog (<scp>SHH</scp>)/wingless int (<scp>WNT</scp>) subtypes, desmoplastic histology and patient survival in human medulloblastomas. Neuropathology and Applied Neurobiology, 2015, 41, 165-179.	3.2	4
28	EphrinB-mediated reverse signalling controls junctional integrity and pro-inflammatory differentiation of endothelial cells. Thrombosis and Haemostasis, 2014, 112, 151-163.	3.4	21
29	In Vitro Models of the Blood–Brain Barrier. Methods in Molecular Biology, 2014, 1135, 415-437.	0.9	116
30	The Wnt/Planar Cell Polarity Signaling Pathway Contributes to the Integrity of Tight Junctions in Brain Endothelial Cells. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 433-440.	4.3	72
31	Novel insights into the development and maintenance of the blood–brain barrier. Cell and Tissue Research, 2014, 355, 687-699.	2.9	236
32	Nucleoside Diphosphate Kinase B Regulates Angiogenesis Through Modulation of Vascular Endothelial Growth Factor Receptor Type 2 and Endothelial Adherens Junction Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2292-2300.	2.4	25
33	Sonic hedgehog causes mural cells to jump â€~n' run. Blood, 2014, 123, 2285-2286.	1.4	2
34	Wnt signaling in the vasculature. Experimental Cell Research, 2013, 319, 1317-1323.	2.6	168
35	Wnt Activation of Immortalized Brain Endothelial Cells as a Tool for Generating a Standardized Model of the Blood Brain Barrier In Vitro. PLoS ONE, 2013, 8, e70233.	2.5	91
36	Increased Efflux of Amyloid-Î ² Peptides through the Blood-Brain Barrier by Muscarinic Acetylcholine Receptor Inhibition Reduces Pathological Phenotypes in Mouse Models of Brain Amyloidosis. Journal of Alzheimer's Disease, 2013, 38, 767-786.	2.6	11

#	Article	lF	CITATIONS
37	Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovascular Research, 2012, 93, 130-140.	3.8	76
38	Soluble epoxide hydrolase regulates hematopoietic progenitor cell function via generation of fatty acid diols. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9995-10000.	7.1	60
39	Acute myocardial infarction activates progenitor cells and increases Wnt signalling in the bone marrow. European Heart Journal, 2012, 33, 1911-1919.	2.2	58
40	Endothelial Wnt/ \hat{l}^2 -catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. Journal of Experimental Medicine, 2012, 209, 1611-1627.	8.5	127
41	Cerebellar Hemorrhage in Extremely Low Birth Weight Siblings: Is There a Familial Disposition?. Journal of Child Neurology, 2011, 26, 767-769.	1.4	0
42	Current concepts of blood-brain barrier development. International Journal of Developmental Biology, 2011, 55, 467-476.	0.6	185
43	NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiology of Disease, 2010, 40, 185-192.	4.4	84
44	Differentiation of the brain vasculature: the answer came blowing by the Wnt. Journal of Angiogenesis Research, 2010, 2, 1.	2.9	117
45	Soluble Epoxide Hydrolase Deficiency Attenuates Neointima Formation in the Femoral Cuff Model of Hyperlipidemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 909-914.	2.4	52
46	Sonic Hedgehog Acts as a Negative Regulator of \hat{l}^2 -Catenin Signaling in the Adult Tongue Epithelium. American Journal of Pathology, 2010, 177, 404-414.	3.8	36
47	Vascular morphogenesis: a Wnt for every vessel?. Current Opinion in Genetics and Development, 2009, 19, 476-483.	3.3	120
48	In vivo fate mapping with SCL regulatory elements identifies progenitors for primitive and definitive hematopoiesis in mice. Mechanisms of Development, 2009, 126, 863-872.	1.7	3
49	VE-cadherin is a critical endothelial regulator of TGF- \hat{I}^2 signalling. EMBO Journal, 2008, 27, 993-1004.	7.8	146
50	Wnt∫î²-catenin signaling controls development of the blood–brain barrier. Journal of Cell Biology, 2008, 183, 409-417.	5.2	680
51	The Wnt Antagonist Dickkopf-1 Mobilizes Vasculogenic Progenitor Cells via Activation of the Bone Marrow Endosteal Stem Cell Niche. Circulation Research, 2008, 103, 796-803.	4.5	68
52	Role of Î ² -Catenin in Endothelial Cell Function. , 2007, , 773-783.		0
53	Endothelial cadherins and tumor angiogenesis. Experimental Cell Research, 2006, 312, 659-667.	2.6	134
54	The Multiple Languages of Endothelial Cell-to-Cell Communication. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1431-1438.	2.4	98

#	Article	IF	CITATIONS
55	Endoglin Null Endothelial Cells Proliferate Faster and Are More Responsive to Transforming Growth Factor \hat{I}^21 with Higher Affinity Receptors and an Activated Alk1 Pathway. Journal of Biological Chemistry, 2005, 280, 27800-27808.	3.4	118
56	\hat{l}^2 -Catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. Journal of Cell Biology, 2004, 166, 359-367.	5.2	344
57	Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathologica, 2003, 105, 586-592.	7.7	392
58	Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes and Development, 2003, 17, 1835-1840.	5.9	557
59	The conditional inactivation of the \hat{l}^2 -catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. Journal of Cell Biology, 2003, 162, 1111-1122.	5.2	297
60	Freeze-Fracture Studies of Cerebral Endothelial Tight Junctions. , 2003, 89, 51-66.		18
61	Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neuroscience Letters, 2001, 307, 77-80.	2.1	173
62	Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C. NeuroReport, 2000, 11, 1427-1431.	1.2	107
63	Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. European Journal of Cell Biology, 2000, 79, 707-717.	3.6	176
64	Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood–brain barrier endothelial cells. Brain Research, 2000, 885, 251-261.	2.2	117
65	Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathologica, 2000, 100, 323-331.	7.7	412
66	Entwicklung und Pathologie der Blut-Hirn-Schranken-GefÃße. E-Neuroforum, 2000, 6, 249-256.	0.1	0
67	The Pecten Oculi of the Chicken: A Model System for Vascular Differentiation and Barrier Maturation. International Review of Cytology, 1999, 187, 111-159.	6.2	45
68	N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development*. European Journal of Neuroscience, 1999, 11, 1191-1201.	2.6	54
69	Maturation of the blood–retina barrier in the developing pecten oculi of the chicken. Developmental Brain Research, 1997, 100, 205-219.	1.7	35
70	The pecten oculi of the chicken as a new in vivo model of the blood-brain barrier. Cell and Tissue Research, 1996, 285, 91-100.	2.9	36