Shea Garrison-Kimmel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4624467/publications.pdf Version: 2024-02-01

SHEA CARRISON-KIMMEL

#	Article	IF	CITATIONS
1	The edge of the Galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3929-3942.	1.6	34
2	A dark matter profile to model diverse feedback-induced core sizes of ΛCDM haloes. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2393-2417.	1.6	71
3	Synthetic Gaia Surveys from the FIRE Cosmological Simulations of Milky Way-mass Galaxies. Astrophysical Journal, Supplement Series, 2020, 246, 6.	3.0	77
4	Evidence for a vast prograde stellar stream in the solar vicinity. Nature Astronomy, 2020, 4, 1078-1083.	4.2	44
5	But what about: cosmic rays, magnetic fields, conduction,Âand viscosity in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3465-3498.	1.6	107
6	A profile in FIRE: resolving the radial distributions of satellite galaxies in the Local Group with simulations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1471-1490.	1.6	77
7	Chasing Accreted Structures within Gaia DR2 Using Deep Learning. Astrophysical Journal, 2020, 903, 25.	1.6	29
8	The origins of the circumgalactic medium in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1248-1272.	1.6	132
9	Phat ELVIS: The inevitable effect of the Milky Way's disc on its dark matter subhaloes. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4409-4423.	1.6	82
10	How low does it go? Too few Galactic satellites with standard reionization quenching. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4585-4595.	1.6	33
11	Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark matter physics. Monthly Notices of the Royal Astronomical Society, 2019, 490, 962-977.	1.6	54
12	Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4447-4463.	1.6	139
13	Predicting the LISA white dwarf binary population in the Milky Way with cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5888-5903.	1.6	95
14	Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local Group environment. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4574-4588.	1.6	83
15	The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1380-1399.	1.6	137
16	Formation, vertex deviation, and age of the Milky Way's bulge: input from a cosmological simulation with a late-forming bar. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5073-5085.	1.6	31
17	The suppression of star formation on the smallest scales: what role does environment play?. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4031-4039.	1.6	50
18	Warm FIRE: simulating galaxy formation with resonant sterile neutrino dark matter. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4086-4099.	1.6	34

#	Article	IF	CITATIONS
19	Under the FIRElight: Stellar Tracers of the Local Dark Matter Velocity Distribution in the Milky Way. Astrophysical Journal, 2019, 883, 27.	1.6	40
20	A Testable Conspiracy: Simulating Baryonic Effects on Self-interacting Dark Matter Halos. Astrophysical Journal, 2018, 853, 109.	1.6	67
21	Reconciling Observed and Simulated Stellar Halo Masses. Astrophysical Journal, 2018, 869, 12.	1.6	48
22	Environmental quenching of low-mass field galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4491-4498.	1.6	42
23	The origin of the diverse morphologies and kinematics of Milky Way-mass galaxies in the FIRE-2 simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4133-4157.	1.6	91
24	Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 219-229.	1.6	48
25	FIRE-2 simulations: physics versus numerics in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 800-863.	1.6	676
26	The origin of ultra diffuse galaxies: stellar feedback and quenching. Monthly Notices of the Royal Astronomical Society, 2018, 478, 906-925.	1.6	125
27	Gas kinematics, morphology and angular momentum in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1930-1955.	1.6	131
28	Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4232-4244.	1.6	79
29	Modeling the Impact of Baryons on Subhalo Populations with Machine Learning. Astrophysical Journal, 2018, 859, 129.	1.6	46
30	Where are the most ancient stars in the Milky Way?. Monthly Notices of the Royal Astronomical Society, 2018, 480, 652-668.	1.6	96
31	Predicting the binary black hole population of the Milky Way with cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2704-2718.	1.6	64
32	Simulating galaxies in the reionization era with FIRE-2: galaxy scaling relations, stellar mass functions, and luminosity functions. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1694-1715.	1.6	106
33	Organized chaos: scatter in the relation between stellar mass and halo mass in small galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3108-3120.	1.6	96
34	Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxiesÂ. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1709-1727.	1.6	242
35	Under pressure: quenching star formation in low-mass satellite galaxies via stripping. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1916-1928.	1.6	87
36	When and where did GW150914 form?. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 463, L31-L35.	1.2	67

SHEA GARRISON-KIMMEL

#	Article	IF	CITATIONS
37	Resonant sterile neutrino dark matter in the local and high- <i>z</i> Universe. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1489-1504.	1.6	51
38	Properties of resonantly produced sterile neutrino dark matter subhaloes. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4346-4353.	1.6	45
39	Satellites of LMC-mass dwarfs: close friendships ruined by Milky Way mass haloes. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3569-3575.	1.6	84
40	Taking care of business in a flash : constraining the time-scale for low-mass satellite quenching with ELVIS. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2039-2049.	1.6	102
41	Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1305-1316.	1.6	124
42	SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: INFALL HISTORIES, GROUP PREPROCESSING, AND REIONIZATION. Astrophysical Journal, 2015, 807, 49.	1.6	111
43	Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary. Monthly Notices of the Royal Astronomical Society, 2015, 453, 29-37.	1.6	225
44	SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: THE PREVALENCE OF DWARF-DWARF MAJOR MERGERS. Astrophysical Journal, 2014, 794, 115.	1.6	83
45	ELVIS: Exploring the Local Volume in Simulations. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2578-2596.	1.6	269
46	How to zoom: bias, contamination and Lagrange volumes in multimass cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1894-1908.	1.6	105
47	Near-field limits on the role of faint galaxies in cosmic reionization. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 443, L44-L48.	1.2	41
48	On the stark difference in satellite distributions around the Milky Way and Andromeda. Monthly Notices of the Royal Astronomical Society, 2014, 439, 73-82.	1.6	34
49	Running with BICEP2: implications for small-scale problems in CDM. Monthly Notices of the Royal Astronomical Society, 2014, 444, 961-970.	1.6	18
50	Too big to fail in the Local Group. Monthly Notices of the Royal Astronomical Society, 2014, 444, 222-236.	1.6	200
51	Sterile neutrino dark matter bounds from galaxies of the Local Group. Physical Review D, 2014, 89, .	1.6	169
52	Cosmological simulations of decaying dark matter: implications for small-scale structure of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2014, 445, 614-629.	1.6	61
53	THE STELLAR-TO-HALO MASS RELATION FOR LOCAL GROUP GALAXIES. Astrophysical Journal Letters, 2014, 784, L14.	3.0	87
54	Can feedback solve the too-big-to-fail problem?. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3539-3546.	1.6	141

#	Article	IF	CITATIONS
55	Cosmological simulations with self-interacting dark matter – I. Constant-density cores and substructure. Monthly Notices of the Royal Astronomical Society, 2013, 430, 81-104.	1.6	555