Rupesh Kumar Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4624240/publications.pdf

Version: 2024-02-01

117571 128225 3,797 61 34 60 citations h-index g-index papers 63 63 63 4149 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats. ACS Sensors, 2017, 2, 553-561.	4.0	260
2	Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices. Accounts of Chemical Research, 2018, 51, 2820-2828.	7.6	214
3	Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosensors and Bioelectronics, 2017, 91, 574-579.	5. 3	201
4	Wearable Electrochemical Microneedle Sensor for Continuous Monitoring of Levodopa: Toward Parkinson Management. ACS Sensors, 2019, 4, 2196-2204.	4.0	196
5	Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosensors and Bioelectronics, 2019, 137, 161-170.	5.3	180
6	Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening. Advanced Healthcare Materials, 2018, 7, e1701264.	3.9	170
7	Food Safety Analysis Using Electrochemical Biosensors. Foods, 2018, 7, 141.	1.9	135
8	Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensors and Actuators B: Chemical, 2019, 296, 126422.	4.0	134
9	Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array. Journal of the American Chemical Society, 2020, 142, 5991-5995.	6.6	130
10	Detection of antibiotics in food: New achievements in the development of biosensors. TrAC - Trends in Analytical Chemistry, 2020, 127, 115883.	5.8	126
11	Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC - Trends in Analytical Chemistry, 2020, 131, 116024.	5.8	123
12	A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Biosensors and Bioelectronics, 2012, 32, 56-61.	5. 3	113
13	Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chemistry, 2016, 192, 799-804.	4.2	104
14	Simultaneous detection of salivary î"9-tetrahydrocannabinol and alcohol using a Wearable Electrochemical Ring Sensor. Talanta, 2020, 211, 120757.	2.9	95
15	Electrochemical Aptasensors for Food and Environmental Safeguarding: A Review. Biosensors, 2018, 8, 28.	2.3	93
16	Wearable potentiometric tattoo biosensor for on-body detection of G-type nerve agents simulants. Sensors and Actuators B: Chemical, 2018, 273, 966-972.	4.0	92
17	Wearable Ring-Based Sensing Platform for Detecting Chemical Threats. ACS Sensors, 2017, 2, 1531-1538.	4.0	89
18	A microneedle biosensor for minimally-invasive transdermal detection of nerve agents. Analyst, The, 2017, 142, 918-924.	1.7	86

#	Article	IF	CITATIONS
19	A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries. Analytica Chimica Acta, 2015, 889, 106-112.	2.6	85
20	Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems. Biosensors and Bioelectronics, 2018, 101, 227-234.	5. 3	79
21	Ionic Liquid-Modified Disposable Electrochemical Sensor Strip for Analysis of Fentanyl. Analytical Chemistry, 2019, 91, 3747-3753.	3.2	70
22	Application of Electrochemical Aptasensors toward Clinical Diagnostics, Food, and Environmental Monitoring: Review. Sensors, 2019, 19, 5435.	2.1	70
23	A novel electrochemical aptamer–antibody sandwich assay for lysozyme detection. Analyst, The, 2015, 140, 4148-4153.	1.7	69
24	Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosensors and Bioelectronics, 2021, 180, 113112.	5.3	63
25	Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Analytical Biochemistry, 2018, 545, 13-19.	1.1	60
26	Chemical Sensing at the Robot Fingertips: Toward Automated Taste Discrimination in Food Samples. ACS Sensors, 2018, 3, 2375-2384.	4.0	59
27	Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers. Talanta, 2016, 153, 138-144.	2.9	57
28	Label free aptasensor for Lysozyme detection: A comparison of the analytical performance of two aptamers. Bioelectrochemistry, 2015, 105, 72-77.	2.4	56
29	Point-of-use robotic sensors for simultaneous pressure detection and chemical analysis. Materials Horizons, 2019, 6, 604-611.	6.4	49
30	Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor. Biosensors and Bioelectronics, 2010, 26, 1560-1564.	5.3	48
31	Automated flow based biosensor for quantification of binary organophosphates mixture in milk using artificial neural network. Sensors and Actuators B: Chemical, 2015, 208, 228-237.	4.0	42
32	Development of an aptasensor based on a fluorescent particles-modified aptamer for ochratoxin A detection. Analytical and Bioanalytical Chemistry, 2015, 407, 7815-7822.	1.9	39
33	Electrospinning of graphene-oxide onto screen printed electrodes for heavy metal biosensor. Sensors and Actuators B: Chemical, 2017, 247, 366-373.	4.0	39
34	Rotibot: Use of Rotifers as Selfâ€Propelling Biohybrid Microcleaners. Advanced Functional Materials, 2019, 29, 1900658.	7.8	37
35	A novel colorimetric competitive aptamer assay for lysozyme detection based on superparamagnetic nanobeads. Talanta, 2017, 165, 436-441.	2.9	32
36	Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics, 2021, 11, 2083.	1.3	29

#	Article	IF	CITATIONS
37	Titanium Dioxide Nanoparticles (TiO2) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection. Toxins, 2015, 7, 3771-3784.	1.5	26
38	Low cost optical device for detection of fluorescence from Ochratoxin A using a CMOS sensor. Sensors and Actuators B: Chemical, 2017, 246, 606-614.	4.0	23
39	An electrochemical sensor based on TiO ₂ /activated carbon nanocomposite modified screen printed electrode and its performance for phenolic compounds detection in water samples. International Journal of Environmental Analytical Chemistry, 2016, 96, 237-246.	1.8	22
40	Epidermal Tattoo Patch for Ultrasoundâ€Based Transdermal Microballistic Delivery. Advanced Materials Technologies, 2017, 2, 1700210.	3.0	21
41	OPAA/fluoride biosensor chip towards field detection of G-type nerve agents. Sensors and Actuators B: Chemical, 2020, 320, 128344.	4.0	18
42	Electrochemical sensor for rapid detection of fentanyl using laser-induced porous carbon-electrodes. Mikrochimica Acta, 2022, 189, 198.	2.5	18
43	A High Sensitivity Micro Format Chemiluminescence Enzyme Inhibition Assay for Determination of Hg(II). Sensors, 2010, 10, 6377-6394.	2.1	16
44	Self-assembled ruthenium decorated electrochemical platform for sensitive and selective determination of amisulpride in presence of co-administered drugs using safranin as a mediator. Microchemical Journal, 2021, 164, 106061.	2.3	13
45	Evaluation of extraction methods for ochratoxin A detection in cocoa beans employing HPLC. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 500-508.	1.1	12
46	Design of a fluorescence aptaswitch based on the aptamer modulated nano-surface impact on the fluorescence particles. RSC Advances, 2016, 6, 65579-65587.	1.7	11
47	A High-Throughput Enzyme Assay for Organophosphate Residues in Milk. Sensors, 2010, 10, 11274-11286.	2.1	10
48	Portable and low cost fluorescence set-up for in-situ screening of Ochratoxin A. Talanta, 2016, 159, 395-400.	2.9	10
49	Detoxification of organophosphate residues using phosphotriesterase and their evaluation using flow based biosensor. Analytica Chimica Acta, 2012, 745, 64-69.	2.6	9
50	Investigation of the thermal stability of the antihypertensive drug nebivolol under different conditions: Experimental and computational analysis. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5779-5786.	2.0	8
51	\hat{l}^2 -Hydroxymyristic acid as a chemical marker to detect endotoxins in dialysis water. Analytical Biochemistry, 2015, 470, 71-77.	1.1	7
52	Determination of Methyl Parathion in Water and Its Removal on Zirconia Using Optical Enzyme Assay. Applied Biochemistry and Biotechnology, 2011, 164, 906-917.	1.4	6
53	Identification of Potential Vaccine Candidates Against SARS-CoV-2 to Fight COVID-19: Reverse Vaccinology Approach. JMIR Bioinformatics and Biotechnology, 2022, 3, e32401.	0.4	6
54	Ligand Assisted Stabilization of Fluorescence Nanoparticles; an Insight on the Fluorescence Characteristics, Dispersion Stability and DNA Loading Efficiency of Nanoparticles. Journal of Fluorescence, 2016, 26, 1407-1414.	1.3	5

#	Article	lF	CITATIONS
55	Design of a portable luminescence bio-tool for on-site analysis of heavy metals in water samples. International Journal of Environmental Analytical Chemistry, 2018, 98, 1081-1094.	1.8	5
56	Biotic Strategies for Toxic Heavy Metal Decontamination. Recent Patents on Biotechnology, 2017, 11, 218-228.	0.4	5
57	Octahedral Cuprous Oxide Decorated Flexible Reduced Graphene Oxide Paper for Food Sensing Application. Electroanalysis, 2021, 33, 1461-1470.	1.5	4
58	Comparative Proteome Analysis of Mycobacterium Tuberculosis Strains - H37Ra, H37Rv, CCDC5180, and CAS/NITR204: A Step Forward to Identify Novel Drug Targets. Letters in Drug Design and Discovery, 2020, 17, 1422-1431.	0.4	3
59	Editorial: Patents on Decontamination of Heavy Metals from Environment. Recent Patents on Biotechnology, 2017, 11, 154-154.	0.4	1
60	Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Critical Reviews in Analytical Chemistry, 2024, 54, 269-314.	1.8	1
61	Recent developments of molecular/biosensor diagnostics for SARS-CoV-2 detection. , 2022, , 167-187.		0