Christian Dusny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4623366/publications.pdf

Version: 2024-02-01

623734 610901 25 669 14 24 citations g-index h-index papers 28 28 28 815 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessing the growth kinetics and stoichiometry of <i>Escherichia coli</i> at the singleâ€cell level. Engineering in Life Sciences, 2023, 23, .	3.6	8
2	Fluorescence lifetime activated droplet sorting (FLADS) for label-free sorting of <i>Synechocystis</i> sp. PCC6803. Lab on A Chip, 2022, 22, 1604-1614.	6.0	8
3	Quantification of Biocatalytic Transformations by Single Microbial Cells Enabled by Tailored Integration of Droplet Microfluidics and Mass Spectrometry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
4	Impact of Fungal Hyphae on Growth and Dispersal of Obligate Anaerobic Bacteria in Aerated Habitats. MBio, 2022, 13, .	4.1	7
5	pH Distribution along Growing Fungal Hyphae at Microscale. Journal of Fungi (Basel, Switzerland), 2022, 8, 599.	3.5	2
6	Microfluidic device for concentration and SERSâ€based detection of bacteria in drinking water. Electrophoresis, 2021, 42, 86-94.	2.4	31
7	Illuminate the hidden: in vivo mapping of microscale pH in the mycosphere using a novel whole-cell biosensor. ISME Communications, $2021, 1, \dots$	4.2	4
8	Microfluidic single-cell analysis in biotechnology: from monitoring towards understanding. Current Opinion in Biotechnology, 2020, 63, 26-33.	6.6	46
9	Conversion Efficiencies of a Few Living Microbial Cells Detected at a High Throughput by Droplet-Based ESI-MS. Analytical Chemistry, 2020, 92, 10700-10708.	6.5	21
10	Microfluidic Single-Cell Analytics. Advances in Biochemical Engineering/Biotechnology, 2020, , 1.	1.1	4
11	Quantifying a Biocatalytic Product from a Few Living Microbial Cells Using Microfluidic Cultivation Coupled to FT-ICR-MS. Analytical Chemistry, 2019, 91, 7012-7018.	6.5	25
12	l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain. Biotechnology for Biofuels, 2018, 11, 231.	6.2	5
13	Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses. Biotechnology Journal, 2017, 12, 1600549.	3.5	41
14	Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiology Reviews, 2017, 41, 751-780.	8.6	38
15	Miniaturized octupole cytometry for cell type independent trapping and analysis. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	10
16	The <i>MOX</i> promoter in <i>Hansenula polymorpha</i> is ultrasensitive to glucose-mediated carbon catabolite repression. FEMS Yeast Research, 2016, 16, fow067.	2.3	13
17	An Inert Continuous Microreactor for the Isolation and Analysis of a Single Microbial Cell. Micromachines, 2015, 6, 1836-1855.	2.9	15
18	Technical bias of microcultivation environments on single-cell physiology. Lab on A Chip, 2015, 15, 1822-1834.	6.0	39

CHRISTIAN DUSNY

#	ARTICLE	IF	CITATION
19	Challenging biological limits with microfluidic single cell analysis. Microbial Biotechnology, 2015, 8, 23-25.	4.2	4
20	Microfluidic singleâ€eell analysis links boundary environments and individual microbial phenotypes. Environmental Microbiology, 2015, 17, 1839-1856.	3.8	41
21	Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments. Lab on A Chip, 2013, 13, 397-408.	6.0	42
22	Isolated Microbial Single Cells and Resulting Micropopulations Grow Faster in Controlled Environments. Applied and Environmental Microbiology, 2012, 78, 7132-7136.	3.1	35
23	Single-Cell Analysis in Biotechnology, Systems Biology, and Biocatalysis. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 129-155.	6.8	174
24	Productive Asymmetric Styrene Epoxidation Based on a Next Generation Electroenzymatic Methodology. Advanced Synthesis and Catalysis, 2009, 351, 2505-2515.	4.3	38
25	Quantification of Biocatalytic Transformations by Single Microbial Cells Enabled by Tailored Integration of Droplet Microfluidics and Mass Spectrometry. Angewandte Chemie, 0, , .	2.0	O