Mark Isalan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4622666/publications.pdf

Version: 2024-02-01

159585 168389 3,143 76 30 53 citations h-index g-index papers 83 83 83 3274 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthetic spatial patterning in bacteria: advances based on novel diffusible signals. Microbial Biotechnology, 2022, 15, 1685-1694.	4.2	4
2	A genetic toolkit and gene switches to limit Mycoplasma growth for biosafety applications. Nature Communications, 2022, 13, 1910.	12.8	10
3	Structural Abnormalities of the Optic Nerve and Retina in Huntington's Disease Pre-Clinical and Clinical Settings. International Journal of Molecular Sciences, 2022, 23, 5450.	4.1	6
4	Identification of the Transcriptional Biomarkers Panel Linked to Pathological Remodelling of the Eye Tissues in Various HD Mouse Models. Cells, 2022, 11, 1675.	4.1	2
5	DNA Recognition/Processing Zinc Fingers: Structure and Design. , 2021, , 506-516.		1
6	Polyglutamine diseases: looking beyond the neurodegenerative universe. Neural Regeneration Research, 2021, 16, 1186.	3.0	3
7	The Application of CRISPR/Cas Systems for Antiviral Therapy. Frontiers in Genome Editing, 2021, 3, 745559.	5 . 2	14
8	Kinetin stimulates differentiation of C2C12 myoblasts. PLoS ONE, 2021, 16, e0258419.	2.5	5
9	Gene Therapy Advances: A Meta-Analysis of AAV Usage in Clinical Settings. Frontiers in Medicine, 2021, 8, 809118.	2.6	91
10	Cross-Sectional Transcriptional Analysis of the Aging Murine Heart. Frontiers in Molecular Biosciences, 2020, 7, 565530.	3.5	5
11	Prevalence of Non-psychiatric Comorbidities in Pre-symptomatic and Symptomatic Huntington's Disease Gene Carriers in Poland. Frontiers in Medicine, 2020, 7, 79.	2.6	12
12	Dynamical model fitting to a synthetic positive feedback circuit in <i>E. coli</i> . Engineering Biology, 2020, 4, 25-31.	1.8	2
13	Accelerated evolution of a minimal 63–amino acid dual transcription factor. Science Advances, 2020, 6, eaba2728.	10.3	13
14	A Comprehensive Network Atlas Reveals That Turing Patterns Are Common but Not Robust. Cell Systems, 2019, 9, 243-257.e4.	6.2	61
15	Trp-ing upon new repressors. Nature Chemical Biology, 2018, 14, 328-329.	8.0	1
16	Functional Insulator Scanning of CpG Islands to Identify Regulatory Regions of Promoters Using CRISPR. Methods in Molecular Biology, 2018, 1766, 285-301.	0.9	1
17	Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors. Cell Systems, 2018, 6, 521-530.e3.	6.2	96
18	Engineering of biomolecules by bacteriophage directed evolution. Current Opinion in Biotechnology, 2018, 51, 32-38.	6.6	17

#	Article	IF	CITATIONS
19	A35â€An altered metabolism of nucleotides leads to huntington's disease related cardiomyopathy. , 2018, , .		0
20	F07â€A frequency of concomitant disorders in presymptomatic huntington's disease patients. , 2018, , .		0
21	Synthetic circuits reveal how mechanisms of gene regulatory networks constrain evolution. Molecular Systems Biology, 2018, 14, e8102.	7.2	34
22	Neuro-Cardio Mechanisms in Huntington's Disease and Other Neurodegenerative Disorders. Frontiers in Physiology, 2018, 9, 559.	2.8	40
23	Commentary: Synthetic Addiction Extends the Productive Life Time of Engineered Escherichia coli Populations. Frontiers in Bioengineering and Biotechnology, 2018, 6, 77.	4.1	3
24	Drug-Inducible Control of Lethality Genes: A Low Background Destabilizing Domain Architecture Applied to the Gal4-UAS System in <i>Drosophila</i> . ACS Synthetic Biology, 2018, 7, 1496-1506.	3.8	14
25	A three-step framework for programming pattern formation. Current Opinion in Chemical Biology, 2017, 40, 1-7.	6.1	24
26	Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication. Nature Protocols, 2017, 12, 1830-1843.	12.0	16
27	Transcriptional Signature of an Altered Purine Metabolism in the Skeletal Muscle of a Huntington's Disease Mouse Model. Frontiers in Physiology, 2017, 8, 127.	2.8	22
28	Early transcriptional alteration of histone deacetylases in a murine model of doxorubicin-induced cardiomyopathy. PLoS ONE, 2017, 12, e0180571.	2.5	18
29	Changes in cardiac nucleotide metabolism in Huntington's disease. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35, 707-712.	1.1	13
30	Identifying ultrasensitive HGF dose-response functions in a 3D mammalian system for synthetic morphogenesis. Scientific Reports, 2016, 6, 39178.	3.3	7
31	Engineering orthogonal dual transcription factors for multi-input synthetic promoters. Nature Communications, 2016, 7, 13858.	12.8	47
32	Deimmunization for gene therapy: host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice. Molecular Neurodegeneration, 2016, 11, 64.	10.8	46
33	An impaired metabolism of nucleotides underpins a novel mechanism of cardiac remodeling leading to Huntington's disease related cardiomyopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2147-2157.	3.8	42
34	From noise to synthetic nucleoli: can synthetic biology achieve new insights?. Integrative Biology (United Kingdom), 2016, 8, 383-393.	1.3	4
35	A shared mechanism of muscle wasting in cancer and Huntington's disease. Clinical and Translational Medicine, 2015, 4, 34.	4.0	22
36	The propagation of perturbations in rewired bacterial gene networks. Nature Communications, 2015, 6, 10105.	12.8	19

#	Article	IF	CITATIONS
37	Sender–receiver systems and applying information theory for quantitative synthetic biology. Current Opinion in Biotechnology, 2015, 31, 101-107.	6.6	26
38	Cooperativity To Increase Turing Pattern Space for Synthetic Biology. ACS Synthetic Biology, 2015, 4, 177-186.	3.8	48
39	A unified design space of synthetic stripe-forming networks. Nature Communications, 2014, 5, 4905.	12.8	128
40	A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Research, 2014, 42, 12322-12328.	14.5	50
41	Synthetic biology and therapeutic strategies for the degenerating brain. BioEssays, 2014, 36, 979-990.	2.5	23
42	Genetically Encoded Sender–Receiver System in 3D Mammalian Cell Culture. ACS Synthetic Biology, 2014, 3, 264-272.	3.8	30
43	\hat{l}^2 -Catenin Fluctuates in Mouse ESCs and Is Essential for Nanog-Mediated Reprogramming of Somatic Cells to Pluripotency. Cell Reports, 2014, 8, 1686-1696.	6.4	50
44	Building synthetic gene circuits from combinatorial libraries: screening and selection strategies. Molecular BioSystems, 2013, 9, 1559.	2.9	32
45	Transfecting RNA quadruplexes results in few transcriptome perturbations. RNA Biology, 2013, 10, 205-210.	3.1	4
46	Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3136-45.	7.1	155
47	A cell in a computer. Nature, 2012, 488, 40-41.	27.8	5
48	Zinc-finger nucleases: how to play two good hands. Nature Methods, 2012, 9, 32-34.	19.0	56
49	The PLOS ONE Synthetic Biology Collection: Six Years and Counting. PLoS ONE, 2012, 7, e43231.	2.5	10
50	p53 Gene Repair with Zinc Finger Nucleases Optimised by Yeast 1-Hybrid and Validated by Solexa Sequencing. PLoS ONE, 2011, 6, e20913.	2.5	34
51	A Biobrick Library for Cloning Custom Eukaryotic Plasmids. PLoS ONE, 2011, 6, e23685.	2.5	15
52	Avoiding transcription factor competition at promoter level increases the chances of obtaining oscillation. BMC Systems Biology, 2010, 4, 66.	3.0	10
53	Gene networks and liar paradoxes. BioEssays, 2009, 31, 1110-1115.	2.5	22
54	This title is false. Nature, 2009, 458, 969-969.	27.8	8

#	Article	IF	CITATIONS
55	Engineering prokaryotic gene circuits. FEMS Microbiology Reviews, 2009, 33, 27-37.	8.6	37
56	Evolvability and hierarchy in rewired bacterial gene networks. Nature, 2008, 452, 840-845.	27.8	285
57	Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences. Nucleic Acids Research, 2008, 36, 2163-2173.	14.5	49
58	Construction of semi-randomized gene libraries with weighted oligonucleotide synthesis and PCR. Nature Protocols, 2006, 1, 468-475.	12.0	16
59	Localized transfection with magnetic beads coated with PCR products and other nucleic acids. Nature Protocols, 2006, 1, 526-531.	12.0	10
60	Localized transfection on arrays of magnetic beads coated with PCR products. Nature Methods, 2005, 2, 113-118.	19.0	36
61	Engineering Gene Networks to Emulate Drosophila Embryonic Pattern Formation. PLoS Biology, 2005, 3, e64.	5.6	111
62	Histone Acetyltransferase Activity of p300 Is Required for Transcriptional Repression by the Promyelocytic Leukemia Zinc Finger Protein. Molecular and Cellular Biology, 2005, 25, 5552-5566.	2.3	99
63	Inhibition of Human Telomerase Activity by an Engineered Zinc Finger Protein that Binds G-Quadruplexesâ€. Biochemistry, 2004, 43, 13452-13458.	2.5	43
64	Zinc Fingers. , 2004, , 435-439.		0
65	Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11997-12002.	7.1	142
66	Repression of the HIV-1 5' LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1615-1620.	7.1	125
67	Inhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1621-1626.	7.1	76
68	Selection of Zinc Fingers that Bind Single-Stranded Telomeric DNA in the G-Quadruplex Conformationâ€. Biochemistry, 2001, 40, 830-836.	2.5	63
69	A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nature Biotechnology, 2001, 19, 656-660.	17.5	187
70	Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods in Enzymology, 2001, 340, 593-609.	1.0	32
71	Advances in zinc finger engineering. Current Opinion in Structural Biology, 2000, 10, 411-416.	5.7	94
72	Engineered zinc finger proteins that respond to DNA modification by Hae III and Hha I methyltransferase enzymes 1 1Edited by T. Richmond. Journal of Molecular Biology, 2000, 295, 471-477.	4.2	14

#	Article	IF	Citations
73	Comprehensive DNA Recognition through Concerted Interactions from Adjacent Zinc Fingers. Biochemistry, 1998, 37, 12026-12033.	2.5	133
74	Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5617-5621.	7.1	152
75	Reducing metabolic burden in the PACEmid evolver system by remastering highâ€copy phagemid vectors. Engineering Biology, 0, , .	1.8	1
76	Emergent expression of fitness-conferring genes by phenotypic selection. , 0, , .		5