
Jingbi You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4622607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542-546.	6.0	5,936
2	Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13, 460-466.	15.6	3,458
3	A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013, 4, 1446.	5.8	2,612
4	Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5, 5404.	5.8	2,214
5	Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11, 75-81.	15.6	1,890
6	Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy, 2017, 2, .	19.8	1,633
7	Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6, 180-185.	15.6	1,374
8	Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014, 8, 1674-1680.	7.3	1,320
9	25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Advanced Materials, 2013, 25, 6642-6671.	11.1	1,055
10	Planarâ€ 5 tructure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials, 2017, 29, 1703852.	11.1	1,003
11	Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications, 2018, 9, 570.	5.8	763
12	An Efficient Tripleâ€Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%. Advanced Materials, 2014, 26, 5670-5677.	11.1	752
13	Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8, 15640.	5.8	669
14	Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014, 105, .	1.5	667
15	Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells. Advanced Materials, 2012, 24, 3046-3052.	11.1	654
16	SnO ₂ : A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small, 2018, 14, e1801154.	5.2	639
17	Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 155-165.	7.6	559
18	High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 2016, 7, 10214.	5.8	534

Jingbi You

#	Article	IF	CITATIONS
19	Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 10071-10079.	6.6	530
20	Addressing the stability issue of perovskite solar cells for commercial applications. Nature Communications, 2018, 9, 5265.	5.8	527
21	Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9, 2225.	5.8	526
22	Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902650.	10.2	516
23	Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. ACS Nano, 2016, 10, 218-224.	7.3	427
24	10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub ells. Advanced Materials, 2013, 25, 3973-3978.	11.1	419
25	The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nature Communications, 2015, 6, 7269.	5.8	404
26	A Seleniumâ€Substituted Lowâ€Bandgap Polymer with Versatile Photovoltaic Applications. Advanced Materials, 2013, 25, 825-831.	11.1	396
27	Perovskite solar cells: film formation and properties. Journal of Materials Chemistry A, 2015, 3, 9032-9050.	5.2	392
28	Metal Oxide Nanoparticles as an Electronâ€Transport Layer in Highâ€Performance and Stable Inverted Polymer Solar Cells. Advanced Materials, 2012, 24, 5267-5272.	11.1	333
29	Plasmonic Polymer Tandem Solar Cell. ACS Nano, 2011, 5, 6210-6217.	7.3	326
30	Make perovskite solar cells stable. Nature, 2017, 544, 155-156.	13.7	304
31	Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38, 1909-1928.	11.8	246
32	Spin oated Small Molecules for High Performance Solar Cells. Advanced Energy Materials, 2011, 1, 771-775.	10.2	233
33	Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nature Communications, 2020, 11, 4165.	5.8	217
34	Perovskite Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 22% via Smallâ€Molecule Passivation. Advanced Materials, 2021, 33, e2007169.	11.1	211
35	Cesium Lead Inorganic Solar Cell with Efficiency beyond 18% via Reduced Charge Recombination. Advanced Materials, 2019, 31, e1905143.	11.1	202
36	Surface Plasmon and Scatteringâ€Enhanced Lowâ€Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Advanced Energy Materials, 2012, 2, 1203-1207.	10.2	160

Јінсві Үои

#	Article	IF	CITATIONS
37	Integrated Perovskite/Bulk-Heterojunction toward Efficient Solar Cells. Nano Letters, 2015, 15, 662-668.	4.5	145
38	High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale, 2018, 10, 5559-5565.	2.8	144
39	Enhanced Proton Conduction in Polymer Electrolyte Membranes as Synthesized by Polymerization of Protic Ionic Liquid-Based Microemulsions. Chemistry of Materials, 2009, 21, 1480-1484.	3.2	142
40	Active Layer-Incorporated, Spectrally Tuned Au/SiO ₂ Core/Shell Nanorod-Based Light Trapping for Organic Photovoltaics. ACS Nano, 2013, 7, 3815-3822.	7.3	134
41	Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 2021, 52, 393-411.	7.1	132
42	A high-performance photodetector based on an inorganic perovskite–ZnO heterostructure. Journal of Materials Chemistry C, 2017, 5, 6115-6122.	2.7	107
43	Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 8243-8249.	2.7	93
44	Effects of Hydrogen Plasma Treatment on the Electrical and Optical Properties of ZnO Films: Identification of Hydrogen Donors in ZnO. ACS Applied Materials & Interfaces, 2010, 2, 1780-1784.	4.0	91
45	Recent progress in stability of perovskite solar cells. Journal of Semiconductors, 2017, 38, 011002.	2.0	89
46	Composition and Interface Engineering for Efficient and Thermally Stable Pb–Sn Mixed Lowâ€Bandgap Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1804603.	7.8	87
47	Highly Efficient Electronâ€Selective Layer Free Perovskite Solar Cells by Constructing Effective p–n Heterojunction. Solar Rrl, 2017, 1, 1600027.	3.1	82
48	Aligned Growth of Millimeterâ€Size Hexagonal Boron Nitride Singleâ€Crystal Domains on Epitaxial Nickel Thin Film. Small, 2017, 13, 1604179.	5.2	76
49	Synthesis of Largeâ€Sized Singleâ€Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition. Advanced Materials, 2015, 27, 8109-8115.	11.1	74
50	Stabilizing γ sPbI ₃ Perovskite via Phenylethylammonium for Efficient Solar Cells with Open ircuit Voltage over 1.3ÂV. Small, 2020, 16, e2005246.	5.2	67
51	Polymerization of Ionic Liquid-Based Microemulsions: A Versatile Method for the Synthesis of Polymer Electrolytes. Macromolecules, 2008, 41, 3389-3392.	2.2	66
52	Delivery of Intact Transcription Factor by Using Selfâ€Assembled Supramolecular Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 3058-3062.	7.2	66
53	Unraveling film transformations and device performance of planar perovskite solar cells. Nano Energy, 2015, 12, 494-500.	8.2	65
54	A Selenophene Containing Benzodithiophene- <i>alt</i> -thienothiophene Polymer for Additive-Free High Performance Solar Cell. Macromolecules, 2015, 48, 562-568.	2.2	59

Јінсві Үои

#	Article	IF	CITATIONS
55	Effects of Organic Cations on the Structure and Performance of Quasi-Two-Dimensional Perovskite-Based Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2019, 10, 2892-2897.	2.1	56
56	Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors. Journal of Materials Chemistry C, 2019, 7, 14999-15006.	2.7	53
57	Selective Direct Growth of Atomic Layered HfS ₂ on Hexagonal Boron Nitride for High Performance Photodetectors. Chemistry of Materials, 2018, 30, 3819-3826.	3.2	51
58	10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nature Communications, 2015, 6, 6391.	5.8	45
59	Recent Progress in Highâ€efficiency Planarâ€structure Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 93-106.	7.3	45
60	Improving Structural Order for a Highâ€Performance Diketopyrrolopyrroleâ€Based Polymer Solar Cell with a Thick Active Layer. Advanced Energy Materials, 2014, 4, 1300739.	10.2	43
61	Epitaxial growth of HfS ₂ on sapphire by chemical vapor deposition and application for photodetectors. 2D Materials, 2017, 4, 031012.	2.0	43
62	Largeâ€Area Synthesis of Layered HfS _{2(1â~'} <i>_x</i> ₎ Se ₂ <i>_x</i> Alloys with Fully Tunable Chemical Compositions and Bandgaps. Advanced Materials, 2018, 30, e1803285.	11.1	41
63	Stabilizing the black phase of cesium lead halide inorganic perovskite for efficient solar cells. Science China Chemistry, 2019, 62, 810-821.	4.2	40
64	Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives. Science Bulletin, 2018, 63, 726-731.	4.3	38
65	Interface Engineering of High-Performance Perovskite Photodetectors Based on PVP/SnO ₂ Electron Transport Layer. ACS Applied Materials & Interfaces, 2018, 10, 6505-6512.	4.0	37
66	Deep Ultraviolet Photodetectors Based on Carbon-Doped Two-Dimensional Hexagonal Boron Nitride. ACS Applied Materials & Interfaces, 2020, 12, 27361-27367.	4.0	37
67	Research progress in large-area perovskite solar cells. Photonics Research, 2020, 8, A1.	3.4	37
68	Magnetic Properties of FePt Nanoparticles Prepared by a Micellar Method. Nanoscale Research Letters, 2010, 5, 1-6.	3.1	34
69	Two-dimensional hexagonal boron–carbon–nitrogen atomic layers. Nanoscale, 2019, 11, 10454-10462.	2.8	34
70	High performance low band gap polymer solar cells with a non-conventional acceptor. Chemical Communications, 2012, 48, 7616.	2.2	33
71	Emerging Lowâ€Ðimensional Crystal Structure of Metal Halide Perovskite Optoelectronic Materials and Devices. Small Structures, 2021, 2, 2000133.	6.9	33
72	Epitaxial Liftoff of Waferâ€Scale VO ₂ Nanomembranes for Flexible, Ultrasensitive Tactile Sensors. Advanced Materials Technologies, 2019, 4, 1800695.	3.0	30

Jingbi You

#	Article	IF	CITATIONS
73	Compositional Engineering of Mixed-Cation Lead Mixed-Halide Perovskites for High-Performance Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 28005-28012.	4.0	27
74	Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles. Nanoscale Research Letters, 2009, 4, 1121-1125.	3.1	26
75	Broadband Photodetector Based on Inorganic Perovskite CsPbBr ₃ /GeSn Heterojunction. Small Methods, 2021, 5, e2100517.	4.6	26
76	Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale, 2019, 11, 9310-9318.	2.8	20
77	Effects of crystalline quality on the ultraviolet emission and electrical properties of the ZnO films deposited by magnetron sputtering. Applied Surface Science, 2009, 255, 5876-5880.	3.1	16
78	Amplified Spontaneous Emission with a Low Threshold from Quasiâ€2D Perovskite Films via Phase Engineering and Surface Passivation. Advanced Optical Materials, 2022, 10, .	3.6	15
79	Comparison and combination of several stress relief methods for cubic boron nitride films deposited by ion beam assisted deposition. Surface and Coatings Technology, 2009, 203, 1452-1456.	2.2	12
80	Enhanced electroluminescence from ZnOâ€based heterojunction lightâ€emitting diodes by hydrogen plasma treatment. Physica Status Solidi - Rapid Research Letters, 2011, 5, 74-76.	1.2	11
81	Updated Progresses in Perovskite Solar Cells. Chinese Physics Letters, 2021, 38, 107801.	1.3	11
82	Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells. Frontiers of Optoelectronics, 2020, 13, 265-271.	1.9	10
83	Enhanced piezoelectric response of the two-tetragonal-phase-coexisted BiFeO 3 epitaxial film. Solid State Communications, 2017, 252, 68-72.	0.9	9
84	Immiscible solvents enabled nanostructure formation for efficient polymer photovoltaic cells. Nanotechnology, 2014, 25, 295401.	1.3	8
85	Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping. Journal of Semiconductors, 2019, 40, 122201.	2.0	7
86	Plastic solar cells: breaking the 10% commercialization barrier. Proceedings of SPIE, 2012, , .	0.8	5
87	Reduction of Ordering Temperature of Self-Assembled FePt Nanoparticles by Addition of Au and Ag. Journal of Nanoscience and Nanotechnology, 2011, 11, 10548-10552.	0.9	4
88	Controlled Growth of Unidirectionally Aligned Hexagonal Boron Nitride Domains on Single Crystal Ni (111)/MgO Thin Films. Crystal Growth and Design, 2019, 19, 453-459.	1.4	3
89	Metastable Tetragonal BiFeO3 Stabilized on Anisotropic a-Plane ZnO. Crystal Growth and Design, 2021, 21, 4372-4379.	1.4	3
90	Tailoring molecular termination for thermally stable perovskite solar cells. Journal of Semiconductors, 2021, 42, 112201.	2.0	3

#	Article	IF	CITATIONS
91	Inverted Planar Structure of Perovskite Solar Cells. , 2016, , 307-324.		2
92	Stable β-CsPbI3 inorganic perovskites deliver photovoltaic efficiency beyond 18%. Science China Chemistry, 2019, 62, 1267-1268.	4.2	2
93	Efficient and stable of perovskite solar cells. , 2016, , .		0
94	Efficient and Stable of Perovskite Optoelectronic Devices. , 2018, , .		0