
Subhra Chakraborty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4621599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic dissection of rice cytoskeleton reveals the dominance of microtubule and microfilament proteins, and novel components in the cytoskeleton-bound polysome. Plant Physiology and Biochemistry, 2022, 170, 75-86.	5.8	1
2	The small heat shock proteins, chaperonin 10, in plants: An evolutionary view and emerging functional diversity. Environmental and Experimental Botany, 2021, 182, 104323.	4.2	11
3	Wheat 2â€Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. Plant Journal, 2021, 105, 1374-1389.	5.7	17
4	Grasspea, a critical recruit among neglected and underutilized legumes, for tapping genomic resources. Current Plant Biology, 2021, 26, 100200.	4.7	11
5	High temperature stress responses and wheat: Impacts and alleviation strategies. Environmental and Experimental Botany, 2021, 190, 104589.	4.2	25
6	Chitosanâ€ŧriggered immunity to <i>Fusarium</i> in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome. Plant Journal, 2020, 103, 561-583.	5.7	29
7	Integrated Seed Proteome and Phosphoproteome Analyses Reveal Interplay of Nutrient Dynamics, Carbon–Nitrogen Partitioning, and Oxidative Signaling in Chickpea. Proteomics, 2020, 20, 1900267.	2.2	4
8	Extracellular Matrix Proteome: Isolation of ECM Proteins for Proteomics Studies. Methods in Molecular Biology, 2020, 2057, 155-172.	0.9	3
9	Dehydrationâ€responsive nuclear proteome landscape of chickpea (<i>Cicer arietinum</i> L.) reveals phosphorylationâ€mediated regulation of stress response. Plant, Cell and Environment, 2019, 42, 230-244.	5.7	23
10	Physiological plasticity to high temperature stress in chickpea: Adaptive responses and variable tolerance. Plant Science, 2019, 289, 110258.	3.6	24
11	Metabolite signatures of grasspea suspension-cultured cells illustrate the complexity of dehydration response. Planta, 2019, 250, 857-871.	3.2	7
12	Transcriptome profiling illustrates expression signatures of dehydration tolerance in developing grasspea seedlings. Planta, 2019, 250, 839-855.	3.2	14
13	Dehydration-responsive alterations in the chloroplast proteome and cell metabolomic profile of rice reveals key stress adaptation responses. Environmental and Experimental Botany, 2019, 160, 12-24.	4.2	27
14	Dehydration-induced proteomic landscape of mitochondria in chickpea reveals large-scale coordination of key biological processes. Journal of Proteomics, 2019, 192, 267-279.	2.4	9
15	Heat Shock Proteins and Abiotic Stress Tolerance in Plants. Heat Shock Proteins, 2018, , 41-69.	0.2	49
16	Integrative network analyses of wilt transcriptome in chickpea reveal genotype dependent regulatory hubs in immunity and susceptibility. Scientific Reports, 2018, 8, 6528.	3.3	14
17	Nuclear Proteome: Isolation of Intact Nuclei, Extraction of Nuclear Proteins, and 2-DE Analysis. Methods in Molecular Biology, 2018, 1696, 41-55.	0.9	10
18	Carboxylate clamp tetratricopeptide repeat (TPR) domain containing Hsp90 cochaperones in Triticeace: An insight into structural and functional diversification. Environmental and Experimental Botany, 2018, 155, 31-44.	4.2	4

	ICLE	IF	CITATIONS
19 Geno Rice /	ome-Wide Identification of the Alba Gene Family in Plants and Stress-Responsive Expression of the Alba Genes. Genes, 2018, 9, 183.	2.4	29

20 Variety-specific nutrient acquisition and dehydration-induced proteomic landscape of grasspea () Tj ETQq0 0 0 rgBT_/Qverlock 10 Tf 50 7

21	Dissecting the chloroplast proteome of chickpea (Cicer arietinum L.) provides new insights into classical and non-classical functions. Journal of Proteomics, 2017, 165, 11-20.	2.4	20
22	Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways. Food Chemistry, 2017, 221, 1077-1087.	8.2	37
23	Molecular Dissection of Extracellular Matrix Proteome Reveals Discrete Mechanism Regulating <i>Verticillium Dahliae</i> Triggered Vascular Wilt Disease in Potato. Proteomics, 2017, 17, 1600373.	2.2	3
24	Quantitative Extracellular Matrix Proteomics Suggests Cell Wall Reprogramming in Hostâ€5pecific Immunity During Vascular Wilt Caused by <i>Fusarium oxysporum</i> in Chickpea. Proteomics, 2017, 17, 1600374.	2.2	10
25	Extracellular Matrix Proteome and Phosphoproteome of Potato Reveals Functionally Distinct and Diverse Canonical and Non-Canonical Proteoforms. Proteomes, 2016, 4, 20.	3.5	9
26	Plant Organellar Proteomics in Response to Dehydration: Turning Protein Repertoire into Insights. Frontiers in Plant Science, 2016, 7, 460.	3.6	13
27	Comparative Proteomics of Oxalate Downregulated Tomatoes Points toward Cross Talk of Signal Components and Metabolic Consequences during Post-harvest Storage. Frontiers in Plant Science, 2016, 7, 1147.	3.6	7
28	Ectopic expression of amaranth seed storage albumin modulates photoassimilate transport and nutrient acquisition in sweetpotato. Scientific Reports, 2016, 6, 25384.	3.3	13
29	Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnology Journal, 2016, 14, 1394-1405.	8.3	50
30	Legume proteomics: Progress, prospects, and challenges. Proteomics, 2016, 16, 310-327.	2.2	35
31	Seed Proteomics: An Overview. , 2016, , 31-52.		0
32	Proteometabolomic analysis of transgenic tomato overexpressing oxalate decarboxylase uncovers novel proteins potentially involved in defense mechanism against Sclerotinia. Journal of Proteomics, 2016, 143, 242-253.	2.4	24
33	Comparison of proteomic and metabolomic profiles of two contrasting ecotypes of sweetpotato () Tj ETQq1 1 0	.784314 r 2.4	gBT_/Overla
34	Proteomics of an Orphan Legume, Grasspea: Current Status and Future Strategy. Plant Tissue Culture and Biotechnology, 2015, 25, 117-141.	0.2	6
35	Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. Journal of Proteome Research, 2015, 14, 2723-2744.	3.7	16
36	Birth of plant proteomics in India: A new horizon. Journal of Proteomics, 2015, 127, 34-43.	2.4	2

SUBHRA CHAKRABORTY

#	Article	IF	CITATIONS
37	Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.). Food Chemistry, 2015, 173, 957-965.	8.2	95
38	Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network. Journal of Proteomics, 2014, 105, 58-73.	2.4	30
39	OsAlba1, a dehydration-responsive nuclear protein of rice (Oryza sativa L. ssp. indica), participates in stress adaptation. Phytochemistry, 2014, 100, 16-25.	2.9	29
40	Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling. Scientific Reports, 2014, 4, 4177.	3.3	29
41	Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics, 2013, 13, 1973-1992.	2.2	61
42	Comparative proteomics of dehydration response in the rice nucleus: New insights into the molecular basis of genotypeâ€specific adaptation. Proteomics, 2013, 13, 3478-3497.	2.2	24
43	Phosphoproteomic Dynamics of Chickpea (<i>Cicer arietinum</i> L.) Reveals Shared and Distinct Components of Dehydration Response. Journal of Proteome Research, 2013, 12, 5025-5047.	3.7	37
44	Comparative Proteomics Reveals a Role for Seed Storage Protein AmA1 in Cellular Growth, Development, and Nutrient Accumulation. Journal of Proteome Research, 2013, 12, 4904-4930.	3.7	35
45	Comparative analyses of nuclear proteome: extending its function. Frontiers in Plant Science, 2013, 4, 100.	3.6	33
46	Reduction of Oxalate Levels in Tomato Fruit and Consequent Metabolic Remodeling Following Overexpression of a Fungal Oxalate Decarboxylase Â. Plant Physiology, 2013, 162, 364-378.	4.8	62
47	Dehydration-Responsive Reversible and Irreversible Changes in the Extracellular Matrix: Comparative Proteomics of Chickpea Genotypes with Contrasting Tolerance. Journal of Proteome Research, 2011, 10, 2027-2046.	3.7	40
48	Characterization of the Secretome of Chickpea Suspension Culture Reveals Pathway Abundance and the Expected and Unexpected Secreted Proteins. Journal of Proteome Research, 2011, 10, 5006-5015.	3.7	26
49	Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry, 2011, 72, 1293-1307.	2.9	85
50	Next-generation protein-rich potato expressing the seed protein gene <i>AmA1</i> is a result of proteome rebalancing in transgenic tuber. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17533-17538.	7.1	91
51	Identification of Extracellular Matrix Proteins of Rice (<i>Oryza sativa</i> L.) Involved in Dehydration-Responsive Network: A Proteomic Approach. Journal of Proteome Research, 2010, 9, 3443-3464.	3.7	97
52	Dehydration-responsive Nuclear Proteome of Rice (Oryza sativa L.) Illustrates Protein Network, Novel Regulators of Cellular Adaptation, and Evolutionary Perspective. Molecular and Cellular Proteomics, 2009, 8, 1579-1598.	3.8	131
53	Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genomics, 2009, 10, 415.	2.8	57
54	Active site geometry of oxalate decarboxylase from Flammulina velutipes: Role of histidine-coordinated manganese in substrate recognition. Protein Science, 2009, 11, 2138-2147.	7.6	17

#	Article	IF	CITATIONS
55	Comparative Proteomics of Tuber Induction, Development and Maturation Reveal the Complexity of Tuberization Process in Potato (<i>Solanum tuberosum</i> L.). Journal of Proteome Research, 2008, 7, 3803-3817.	3.7	62

Proteomics Approach to Identify Dehydration Responsive Nuclear Proteins from Chickpea (Cicer) Tj ETQq000 rgBT/Qverlock 10 Tf 50 7

57	Comparative Proteomics Analysis of Differentially Expressed Proteins in Chickpea Extracellular Matrix during Dehydration Stress. Molecular and Cellular Proteomics, 2007, 6, 1868-1884.	3.8	183
58	The Nuclear Proteome of Chickpea (Cicer arietinumL.) Reveals Predicted and Unexpected Proteins. Journal of Proteome Research, 2006, 5, 3301-3311.	3.7	81
59	Extracellular Matrix Proteome of Chickpea (CicerarietinumL.) Illustrates Pathway Abundance, Novel Protein Functions and Evolutionary Perspect. Journal of Proteome Research, 2006, 5, 1711-1720.	3.7	57
60	Cloning and characterization of the 5′-flanking region of the oxalate decarboxylase gene from Flammulina velutipes. Biochemical Journal, 2002, 367, 67-75.	3.7	24