
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4621483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical measurement of microvascular oxygenation and blood flow responses in awake mouse cortex during functional activation. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 510-525.	2.4	24
2	Ultrafast Tracking of Oxygen Dynamics During Proton FLASH. International Journal of Radiation Oncology Biology Physics, 2022, 113, 624-634.	0.4	18
3	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	1.7	17
4	Measurement of cerebral oxygen pressure in living mice by two-photon phosphorescence lifetime microscopy. STAR Protocols, 2022, 3, 101370.	0.5	3
5	Oxygen Monitoring in Model Solutions and In Vivo in Mice During Proton Irradiation at Conventional and FLASH Dose Rates. Radiation Research, 2022, 198, .	0.7	9
6	Effects of voluntary exercise on cerebral microcirculation and oxygenation in aged mice. , 2022, , .		0
7	Arylphthalimidoporphyrins: New Approaches to Imaging pH and Temperature Simultaneously with Oxygen. ECS Meeting Abstracts, 2022, MA2022-01, 945-945.	0.0	0
8	Renal microvascular oxygen tension during hyperoxia and acute hemodilution assessed by phosphorescence quenching and excitation with blue and red light. Canadian Journal of Anaesthesia, 2021, 68, 214-225.	0.7	5
9	Review of in vivo optical molecular imaging and sensing from x-ray excitation. Journal of Biomedical Optics, 2021, 26, .	1.4	11
10	High-Resolution pO2 Imaging Improves Quantification of the Hypoxic Fraction in Tumors During Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 109, 603-613.	0.4	9
11	<i>syn</i> -Diarylphthalimidoporphyrins: Effects of Symmetry Breaking on Two-Photon Absorption and Linear Photophysical Properties. Journal of Physical Chemistry A, 2021, 125, 2977-2988.	1.1	2
12	Quantifying Intestinal Capillary Oxygenation Using Twoâ€photon Phosphorescence Lifetime Microscopy. FASEB Journal, 2021, 35, .	0.2	0
13	Impact of sodium glucose linked cotransporterâ€2 inhibition on renal microvascular oxygen tension in a rodent model of diabetes mellitus. Physiological Reports, 2021, 9, e14890.	0.7	13
14	Quantification of Oxygen Depletion During FLASH Irradiation In Vitro and In Vivo. International Journal of Radiation Oncology Biology Physics, 2021, 111, 240-248.	0.4	93
15	Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials, 2021, 276, 121041.	5.7	39
16	NIH Workshop 2018: Towards Minimally Invasive or Noninvasive Approaches to Assess Tissue Oxygenation Pre- and Post-transfusion. Transfusion Medicine Reviews, 2021, 35, 46-55.	0.9	6
17	Endothermic and Exothermic Energy Transfer Made Equally Efficient for Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry Letters, 2020, 11, 318-324.	2.1	30
18	<i>In vivo</i> deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing. Nanoscale, 2020, 12, 2657-2672.	2.8	18

#	Article	IF	CITATIONS
19	Protonation of Planar and Nonplanar Porphyrins: A Calorimetric and Computational Study. Journal of Physical Chemistry A, 2020, 124, 8994-9003.	1.1	7
20	Renal tissue Po2sensing during acute hemodilution is dependent on the diluent. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R799-R812.	0.9	8
21	Prospects for the Use of Upconverting Nanoparticles as a Contrast Agent for Enumeration of Circulating Cells in vivo. International Journal of Nanomedicine, 2020, Volume 15, 1709-1719.	3.3	5
22	Blood Flow Measurements Enable Optimization of Light Delivery for Personalized Photodynamic Therapy. Cancers, 2020, 12, 1584.	1.7	8
23	Tissue pO2 distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy. Nature Communications, 2020, 11, 573.	5.8	45
24	Three-Photon Spectroscopy of Porphyrins. Journal of Physical Chemistry A, 2020, 124, 11038-11050.	1.1	9
25	Live-animal imaging of native haematopoietic stem and progenitor cells. Nature, 2020, 578, 278-283.	13.7	171
26	Implantable sensor for local Cherenkov-excited luminescence imaging of tumor pO2 during radiotherapy. Journal of Biomedical Optics, 2020, 25, .	1.4	6
27	Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair. ACS Applied Materials & Interfaces, 2019, 11, 33548-33558.	4.0	30
28	Oxyphor 2P: A High-Performance Probe for Deep-Tissue Longitudinal Oxygen Imaging. Cell Metabolism, 2019, 29, 736-744.e7.	7.2	105
29	Merger of dynamic two-photon and phosphorescence lifetime microscopy reveals dependence of lymphocyte motility on oxygen in solid and hematological tumors. , 2019, 7, 78.		42
30	Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochemical and Photobiological Sciences, 2019, 18, 2142-2149.	1.6	7
31	One- and two-photon absorption properties of quadrupolar thiophene-based dyes with acceptors of varying strengths. Photochemical and Photobiological Sciences, 2019, 18, 2180-2190.	1.6	16
32	Bright Phosphorescence of All-Organic Chromophores Confined within Water-Soluble Silica Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 29884-29890.	1.5	16
33	More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction. ELife, 2019, 8, .	2.8	68
34	Maps of in vivo oxygen pressure with submillimetre resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging. Nature Biomedical Engineering, 2018, 2, 254-264.	11.6	55
35	Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4170-4175.	3.3	176
36	In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nature Protocols, 2018, 13, 1377-1402.	5.5	45

#	Article	IF	CITATIONS
37	Two-photon phosphorescence lifetime microscopy of retinal capillary plexus oxygenation in mice. Journal of Biomedical Optics, 2018, 23, 1.	1.4	6
38	Radiotherapy-induced Cherenkov luminescence imaging in a human body phantom. Journal of Biomedical Optics, 2018, 23, 1.	1.4	7
39	Imaging of cortical oxygen tension and blood flow following targeted photothrombotic stroke. Neurophotonics, 2018, 5, 1.	1.7	24
40	Bright Long-Lived Luminescence of Silicon Nanocrystals Sensitized by Two-Photon Absorbing Antenna. CheM, 2017, 2, 550-560.	5.8	25
41	Designing Neuronal Optical Voltage-Sensing Probes using Artificial Proteins. Biophysical Journal, 2017, 112, 285a.	0.2	Ο
42	Stabilizing <i>g</i> -States in Centrosymmetric Tetrapyrroles: Two-Photon-Absorbing Porphyrins with Bright Phosphorescence. Journal of Physical Chemistry A, 2017, 121, 6243-6255.	1.1	22
43	Self-Sorting and Coassembly of Fluorinated, Hydrogenated, and Hybrid Janus Dendrimers into Dendrimers of the American Chemical Society, 2016, 138, 12655-12663.	6.6	83
44	The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150356.	1.8	41
45	Gold Tris(carboxyphenyl)corroles as Multifunctional Materials: Room Temperature Near-IR Phosphorescence and Applications to Photodynamic Therapy and Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 18935-18942.	4.0	86
46	Light sheet luminescence imaging with Cherenkov excitation in thick scattering media. Optics Letters, 2016, 41, 2986.	1.7	26
47	Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients. Neurophotonics, 2016, 3, 045005.	1.7	39
48	Two-Photon Absorbing Phosphorescent Metalloporphyrins: Effects of π-Extension and Peripheral Substitution. Journal of the American Chemical Society, 2016, 138, 15648-15662.	6.6	55
49	Mitochondrial cytochrome <i>c</i> oxidase: Mechanism of action and role in regulating oxidative phosphorylation: Reply to Pannala, Beard, and Dash. Journal of Applied Physiology, 2015, 119, 158-158.	1.2	10
50	The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1α Phosphorylation. Molecular Cancer Therapeutics, 2015, 14, 1928-1938.	1.9	54
51	Erlotinib Pretreatment Improves Photodynamic Therapy of Non–Small Cell Lung Carcinoma Xenografts via Multiple Mechanisms. Cancer Research, 2015, 75, 3118-3126.	0.4	41
52	CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science, 2015, 348, 699-703.	6.0	186
53	Cherenkov-excited luminescence scanned imaging. Optics Letters, 2015, 40, 827.	1.7	46
54	Implanted Cell-Dense Prevascularized Tissues Develop Functional Vasculature That Supports Reoxygenation After Thrombosis. Tissue Engineering - Part A, 2014, 20, 2316-2328.	1.6	38

4

#	Article	IF	CITATIONS
55	Cherenkov excited phosphorescence-based pO ₂ estimation during multi-beam radiation therapy: phantom and simulation studies. Physics in Medicine and Biology, 2014, 59, 5317-5328.	1.6	27
56	Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature, 2014, 508, 269-273.	13.7	933
57	Mitochondrial cytochrome <i>c</i> oxidase: mechanism of action and role in regulating oxidative phosphorylation. Journal of Applied Physiology, 2014, 117, 1431-1439.	1.2	30
58	Correlation Between Intraluminal Oxygen Gradient and Radial Partitioning of Intestinal Microbiota. Gastroenterology, 2014, 147, 1055-1063.e8.	0.6	658
59	Two-Photon Antenna-Core Oxygen Probe with Enhanced Performance. Analytical Chemistry, 2014, 86, 5937-5945.	3.2	69
60	Synthesis of Phosphorescent Asymmetrically π-Extended Porphyrins for Two-Photon Applications. Journal of Organic Chemistry, 2014, 79, 8812-8825.	1.7	46
61	Magnetic Field Effects on Triplet–Triplet Annihilation in Solutions: Modulation of Visible/NIR Luminescence. Journal of Physical Chemistry Letters, 2013, 4, 2799-2804.	2.1	36
62	The Challenge of Connecting the Dots in the B.R.A.I.N Neuron, 2013, 80, 270-274.	3.8	73
63	Light Harvesting and Light Activatable Protein Maquettes Designed fromÂScratch. Biophysical Journal, 2013, 104, 531a.	0.2	1
64	Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion. Biomedical Optics Express, 2013, 4, 1061.	1.5	52
65	Oxygen tomography by ÄŒerenkov-excited phosphorescence during external beam irradiation. Journal of Biomedical Optics, 2013, 18, 050503.	1.4	34
66	ÄŒerenkov radiation emission and excited luminescence (CREL) sensitivity during external beam radiation therapy: Monte Carlo and tissue oxygenation phantom studies. Biomedical Optics Express, 2012, 3, 2381.	1.5	42
67	Oxygen, pH, and mitochondrial oxidative phosphorylation. Journal of Applied Physiology, 2012, 113, 1838-1845.	1.2	48
68	Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20826-20831.	3.3	88
69	Electrochemistry of Platinum(II) Porphyrins: Effect of Substituents and π-Extension on Redox Potentials and Site of Electron Transfer. Inorganic Chemistry, 2012, 51, 6200-6210.	1.9	66
70	Generation of Phosphorescent Triplet States via Photoinduced Electron Transfer: Energy and Electron Transfer Dynamics in Pt Porphyrin–Rhodamine B Dyads. Journal of Physical Chemistry A, 2012, 116, 3598-3610.	1.1	36
71	Engineering oxidoreductases: maquette proteins designed from scratch. Biochemical Society Transactions, 2012, 40, 561-566.	1.6	50
72	Modulation of Visible Room Temperature Phosphorescence by Weak Magnetic Fields. Journal of Physical Chemistry Letters, 2012, 3, 3115-3119.	2.1	10

SERGEI A VINOGRADOV

#	Article	IF	CITATIONS
73	Frontiers in Optical Imaging of Cerebral Blood Flow and Metabolism. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1259-1276.	2.4	137
74	Tumor Blood Flow Differs between Mouse Strains: Consequences for Vasoresponse to Photodynamic Therapy. PLoS ONE, 2012, 7, e37322.	1.1	23
75	Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study. Photochemical and Photobiological Sciences, 2011, 10, 1056-1065.	1.6	37
76	Two New "Protected―Oxyphors for Biological Oximetry: Properties and Application in Tumor Imaging. Analytical Chemistry, 2011, 83, 8756-8765.	3.2	201
77	Cerebral Blood Oxygenation Measurement Based on Oxygen-dependent Quenching of Phosphorescence. Journal of Visualized Experiments, 2011, , .	0.2	17
78	Oxygen-dependent quenching of phosphorescence used to characterize improved myocardial oxygenation resulting from vasculogenic cytokine therapy. Journal of Applied Physiology, 2011, 110, 1460-1465.	1.2	12
79	Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen. Photochemistry and Photobiology, 2011, 87, 1077-1091.	1.3	24
80	"Overshoot―of O ₂ Is Required to Maintain Baseline Tissue Oxygenation at Locations Distal to Blood Vessels. Journal of Neuroscience, 2011, 31, 13676-13681.	1.7	175
81	Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nature Medicine, 2011, 17, 893-898.	15.2	236
82	Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nature Methods, 2010, 7, 755-759.	9.0	415
83	Neutrophil α-Defensins Cause Lung Injury by Disrupting the Capillary–Epithelial Barrier. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 935-946.	2.5	73
84	Ï€-Extended Dipyrrins Capable of Highly Fluorogenic Complexation with Metal Ions. Journal of the American Chemical Society, 2010, 132, 9552-9554.	6.6	88
85	Two-Photon Microscopy of Oxygen: Polymersomes as Probe Carrier Vehiclesâ€. Journal of Physical Chemistry B, 2010, 114, 14373-14382.	1.2	24
86	Monitoring Proton Flux Quantitatively; Influenza Proton Channel A/M2. Biophysical Journal, 2010, 98, 224a.	0.2	0
87	Highly Non-Planar Dendritic Porphyrin for pH Sensing: Observation of Porphyrin Monocation. Inorganic Chemistry, 2010, 49, 9909-9920.	1.9	68
88	Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobes. Analytical Biochemistry, 2009, 388, 296-305.	1.1	19
89	Optical monitoring of oxygen tension in cortical microvessels with confocal microscopy. Optics Express, 2009, 17, 22341.	1.7	58
90	Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression. Applied Optics, 2009, 48, D169.	2.1	58

#	Article	IF	CITATIONS
91	Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems. ACS Applied Materials & Interfaces, 2009, 1, 1292-1304.	4.0	194
92	Probing membrane proteins: Proton translocation by respiratory Complex I subunits and mrp antiporters. Biophysical Journal, 2009, 96, 566a.	0.2	0
93	Oxygen Microscopy by Twoâ€Photonâ€Excited Phosphorescence. ChemPhysChem, 2008, 9, 1673-1679.	1.0	238
94	Dynamic quenching of porphyrin triplet states by two-photon absorbing dyes: Towards two-photon-enhanced oxygen nanosensors. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 75-84.	2.0	40
95	Effects of Structural Deformations on Optical Properties of Tetrabenzoporphyrins: Free-Bases and Pd Complexes. Journal of Physical Chemistry A, 2008, 112, 7723-7733.	1.1	104
96	Influence of optical heterogeneities on reconstruction of spatial phosphorescence lifetime distributions. Optics Letters, 2008, 33, 782.	1.7	3
97	Design of metalloporphyrin-based dendritic nanoprobes for two-photon microscopy of oxygen. Journal of Porphyrins and Phthalocyanines, 2008, 12, 1261-1269.	0.4	59
98	Selective Transport of Water Mediated by Porous Dendritic Dipeptides. Journal of the American Chemical Society, 2007, 129, 11698-11699.	6.6	160
99	Energy and Electron Transfer in Enhanced Two-Photon-Absorbing Systems with Triplet Cores. Journal of Physical Chemistry A, 2007, 111, 6977-6990.	1.1	70
100	Reply to Tsai, Cabrales, Johnson, and Intaglietta. Journal of Applied Physiology, 2007, 102, 2083-2083.	1.2	1
101	Feasibility of diffuse optical imaging with long-lived luminescent probes. Optics Letters, 2006, 31, 1082.	1.7	16
102	Simultaneous fluorometry and phosphorometry of Langendorff perfused rat heart: ex vivo animal studies. Optics Letters, 2006, 31, 2995.	1.7	13
103	Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle. Journal of Applied Physiology, 2006, 101, 1648-1656.	1.2	106
104	Amphiphilic diblock star polymer catalysts via atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 4939-4951.	2.5	47
105	Phosphorescence of individual horseradish peroxidases proteins having a modified heme group. Chemical Physics Letters, 2005, 401, 30-34.	1.2	5
106	Synthesis of Symmetrical Tetraaryltetranaphtho[2,3]porphyrins. Journal of Organic Chemistry, 2005, 70, 4617-4628.	1.7	89
107	Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. Journal of Applied Physiology, 2005, 98, 1503-1510.	1.2	90
108	Arylamide Dendrimers with Flexible Linkers via Haloacyl Halide Method. Organic Letters, 2005, 7, 1761-1764.	2.4	27

#	Article	IF	CITATIONS
109	Synthesis and Luminescence of Solublemeso-Unsubstituted Tetrabenzo- and Tetranaphtho[2,3]porphyrins. Journal of Organic Chemistry, 2005, 70, 9562-9572.	1.7	111
110	Phosphorescent Oxygen Sensor with Dendritic Protection and Two-Photon Absorbing Antenna. Journal of the American Chemical Society, 2005, 127, 11851-11862.	6.6	250
111	Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature, 2004, 430, 764-768.	13.7	613
112	Novel Versatile Synthesis of Substituted Tetrabenzoporphyrins. Journal of Organic Chemistry, 2004, 69, 522-535.	1.7	152
113	Flexibility in Proteins: Tuning the Sensitivity to O ₂ Diffusion by Varying the Lifetime of a Phosphorescent Sensor in Horseradish Peroxidase [¶] . Photochemistry and Photobiology, 2004, 80, 36-40.	1.3	0
114	Flexibility in Proteins: Tuning the Sensitivity to O2 Diffusion by Varying the Lifetime of a Phosphorescent Sensor in Horseradish Peroxidase¶. Photochemistry and Photobiology, 2004, 80, 36.	1.3	8
115	Dendrimers with tetrabenzoporphyrin cores: near infrared phosphors for in vivo oxygen imaging. Tetrahedron, 2003, 59, 3821-3831.	1.0	116
116	Accessibility of oxygen with respect to the heme pocket in horseradish peroxidase. Proteins: Structure, Function and Bioinformatics, 2003, 53, 656-666.	1.5	25
117	Observation and Interpretation of Annulated Porphyrins:Â Studies on the Photophysical Properties ofmeso-Tetraphenylmetalloporphyrins. Journal of Physical Chemistry A, 2003, 107, 11331-11339.	1.1	160
118	Direct Observation of Triplet State Emission of Single Molecules:Â Single Molecule Phosphorescence Quenching of Metalloporphyrin and Organometallic Complexes by Molecular Oxygen and Their Quenching Rate Distributions. Journal of the American Chemical Society, 2003, 125, 13198-13204.	6.6	50
119	Luminescent Zn and Pd Tetranaphthaloporphyrins. Inorganic Chemistry, 2003, 42, 4253-4255.	1.9	45
120	Novel Route to Functionalized Tetraaryltetra[2,3]naphthaloporphyrins via Oxidative Aromatization. Journal of Organic Chemistry, 2003, 68, 7517-7520.	1.7	63
121	Porphyrin and Tetrabenzoporphyrin Dendrimers:  Tunable Membrane-Impermeable Fluorescent pH Nanosensors. Journal of the American Chemical Society, 2003, 125, 4882-4893.	6.6	155
122	Phosphorescent Pd Porphyrinâ^'Dendrimers:Â Tuning Core Accessibility by Varying the Hydrophobicity of the Dendritic Matrix. Macromolecules, 2002, 35, 1991-1993.	2.2	85
123	A method for measuring oxygen distributions in tissue using frequency domain phosphorometry. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 132, 147-152.	0.8	39
124	Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Analytical Biochemistry, 2002, 310, 191-198.	1.1	269
125	Influence of Nonplanarity and Extended Conjugation on Porphyrin Basicity. Inorganic Chemistry, 2002, 41, 6944-6946.	1.9	67
126	An expedient synthesis of substituted tetraaryltetrabenzoporphyrins. Chemical Communications, 2001, , 261-262.	2.2	56

#	Article	IF	CITATIONS
127	Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples. Review of Scientific Instruments, 2001, 72, 3396-3406.	0.6	111
128	Electrostatic Core Shielding in Dendritic Polyglutamic Porphyrins. Chemistry - A European Journal, 2000, 6, 2456-2461.	1.7	50
129	Recursive Maximum Entropy Algorithm and its Application to the Luminescence Lifetime Distribution Recovery. Applied Spectroscopy, 2000, 54, 849-855.	1.2	46
130	Dendritic Polyglutamic Porphyrins: Probing Porphyrin Protection by Oxygen-Dependent Quenching of Phosphorescence. Chemistry - A European Journal, 1999, 5, 1338-1347.	1.7	124
131	Palladium catalyzed carbonylation of Br-substituted porphyrins. Tetrahedron Letters, 1998, 39, 8935-8938.	0.7	23
132	A New, Water Soluble, Phosphor for Oxygen Measurements in Vivo. Advances in Experimental Medicine and Biology, 1997, 428, 651-656.	0.8	57
133	Intravascular oxygen distribution in subcutaneous 9L tumors and radiation sensitivity. Journal of Applied Physiology, 1997, 82, 1939-1945.	1.2	20
134	The primary oxygen sensor of the cat carotid body is cytochromea3of the mitochondrial respiratory chain. FEBS Letters, 1994, 351, 370-374.	1.3	115
135	Review of Tissue Oxygenation Sensing During Radiotherapy Based Upon Cherenkov-Excited Luminescence Imaging. Applied Magnetic Resonance, 0, , 1.	0.6	1