Eric Herbst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4621339/publications.pdf

Version: 2024-02-01

144 papers 13,370 citations

28736 57 h-index 24511 114 g-index

148 all docs

148 docs citations

times ranked

148

4790 citing authors

#	Article	IF	CITATIONS
1	Synthetic Approaches to Complex Organic Molecules in the Cold Interstellar Medium. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	11
2	Formation of Complex Organic Molecules in Hot Molecular Cores through Nondiffusive Grain-surface and Ice-mantle Chemistry. Astrophysical Journal, Supplement Series, 2022, 259, 1.	3.0	50
3	The Kiloparsec-scale Neutral Atomic Carbon Outflow in the Nearby Type 2 Seyfert Galaxy NGC 1068: Evidence for Negative AGN Feedback. Astrophysical Journal Letters, 2022, 927, L32.	3.0	12
4	Misaligned Rotations of the Envelope, Outflow, and Disks in the Multiple Protostellar System of VLA 1623–2417: FAUST. III. Astrophysical Journal, 2022, 927, 54.	1.6	7
5	PDRs4All: A JWST Early Release Science Program on Radiative Feedback from Massive Stars. Publications of the Astronomical Society of the Pacific, 2022, 134, 054301.	1.0	26
6	Vibrationally Excited Lines of HC ₃ N Associated with the Molecular Disk around the G24.78+0.08 A1 Hypercompact H ii Region. Astrophysical Journal, 2022, 931, 99.	1.6	3
7	Cold Chemistry and Beyond: The Astrochemical Context. , 2022, , 539-581.		1
8	Interstellar detection of the highly polar five-membered ring cyanocyclopentadiene. Nature Astronomy, 2021, 5, 176-180.	4.2	96
9	The First Mid-infrared Detection of HNC in the Interstellar Medium: Probing the Extreme Environment toward the Orion Hot Core. Astrophysical Journal, 2021, 907, 51.	1.6	9
10	An investigation of spectral line stacking techniques and application to the detection of HC11N. Nature Astronomy, 2021, 5, 188-196.	4.2	49
11	Carbon Chain Chemistry in Hot-core Regions around Three Massive Young Stellar Objects Associated with 6.7 GHz Methanol Masers. Astrophysical Journal, 2021, 908, 100.	1.6	5
12	Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science, 2021, 371, 1265-1269.	6.0	236
13	FAUST. II. Discovery of a Secondary Outflow in IRAS 15398â^'3359: Variability in Outflow Direction during the Earliest Stage of Star Formation?. Astrophysical Journal, 2021, 910, 11.	1.6	19
14	Carbon-chain Chemistry versus Complex-organic-molecule Chemistry in Envelopes around Three Low-mass Young Stellar Objects in the Perseus Region. Astrophysical Journal, 2021, 910, 141.	1.6	6
15	Discovery of the Pure Polycyclic Aromatic Hydrocarbon Indene (c-C9H8) with GOTHAM Observations of TMC-1. Astrophysical Journal Letters, 2021, 913, L18.	3.0	96
16	Modelling the insertion of $O(1D)$ into methane on the surface of interstellar ice mantles. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1526-1532.	1.6	7
17	Chemical Compositions in the Vicinity of Protostars in Ophiuchus. Astrophysical Journal, 2021, 922, 152.	1.6	4
18	Unusual Chemical Processes in Interstellar Chemistry: Past and Present. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	24

#	Article	IF	Citations
19	Investigation of chemical differentiation among the NGC 2264 cluster-forming clumps. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2395-2409.	1.6	7
20	The Effect of Chemisorption on the Chemical Evolution of Star-forming Regions. Astrophysical Journal, Supplement Series, 2020, 247, 4.	3.0	1
21	Chemical models of interstellar cyanomethanimine isomers. Monthly Notices of the Royal Astronomical Society, 2020, 497, 609-625.	1.6	12
22	Efficient Production of S ₈ in Interstellar Ices: The Effects of Cosmic-Ray-driven Radiation Chemistry and Nondiffusive Bulk Reactions. Astrophysical Journal, 2020, 888, 52.	1.6	45
23	Complex Organic Molecules (COMs) in Star-Forming Regions: A Virtual Special Issue. ACS Earth and Space Chemistry, 2020, 4, 488-490.	1.2	5
24	The role of radiolysis in the modelling of C2H4O2 isomers and dimethyl ether in cold dark clouds. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3414-3424.	1.6	17
25	Detection of Interstellar HC ₄ NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions. Astrophysical Journal Letters, 2020, 900, L9.	3.0	32
26	Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH ₂ CN) in TMC-1. Astrophysical Journal Letters, 2020, 900, L10.	3.0	60
27	Cyanopolyyne Chemistry around Massive Young Stellar Objects. Astrophysical Journal, 2019, 881, 57.	1.6	21
28	Investigation of ¹³ C Isotopic Fractionation of CCH in Two Starless Cores: L1521B and L134N. Astrophysical Journal, 2019, 884, 167.	1.6	10
29	Modeling C-shock Chemistry in Isolated Molecular Outflows. Astrophysical Journal, 2019, 881, 32.	1.6	24
30	ALMA Detection of Vibrationally Excited ($v < sub > t < / sub > = 1, 2$) Acetic Acid toward NGC 6334I. Astrophysical Journal, 2019, 882, 118.	1.6	7
31	On Simulating the Proton-irradiation of O ₂ and H ₂ O Ices Using Astrochemical-type Models, with Implications for Bulk Reactivity. Astrophysical Journal, 2019, 876, 140.	1.6	30
32	ALMA Observations of the Spatial Distribution of Three C ₂ H ₄ O ₂ Isomers toward Sgr B2(N). Astrophysical Journal, 2019, 871, 112.	1.6	19
33	Radiation chemistry in astrochemical models: From the laboratory to the ISM. Proceedings of the International Astronomical Union, 2019, 15, 454-455.	0.0	0
34	Virtual Issue on Astrochemistry: From the Chemical Laboratory to the Stars. Journal of Physical Chemistry A, 2019, 123, 9881-9882.	1.1	1
35	Virtual Issue on Astrochemistry: From the Chemical Laboratory to the Stars. ACS Earth and Space Chemistry, 2019, 3, 2372-2373.	1.2	1
36	Detection of the aromatic molecule benzonitrile (<i><c< i="">-C ₆ H ₅ CN) in the interstellar medium. Science, 2018, 359, 202-205.</c<></i>	6.0	370

#	Article	IF	Citations
37	High Spectral Resolution SOFIA/EXES Observations of C ₂ H ₂ Âtoward Orion IRc2. Astrophysical Journal, 2018, 856, 9.	1.6	15
38	Multiple Paths of Deuterium Fractionation in Protoplanetary Disks. Astrophysical Journal, 2018, 855, 119.	1.6	27
39	A general method for the inclusion of radiation chemistry in astrochemical models. Physical Chemistry Chemical Physics, 2018, 20, 5359-5367.	1.3	51
40	Astrochemical Kinetic Grid Models of Groups of Observed Molecular Abundances: Taurus Molecular Cloud 1 (TMC-1). Astrophysical Journal, 2018, 868, 41.	1.6	12
41	A molecular line survey toward the nearby galaxies NGC 1068, NGC 253, and IC 342 at 3 mm v Nobeyama 45Âm radio telescope: Impact of an AGN on 1 kpc scale molecular abundances. Publication of the Astronomical Society of Japan, 2018, 70, .	vith the 1.0	17
42	Hot Cores in Magellanic Clouds. Astrophysical Journal, 2018, 859, 51.	1.6	12
43	On Cosmic-Ray-driven Grain Chemistry in Cold Core Models. Astrophysical Journal, 2018, 861, 20.	1.6	76
44	A Combined Experimental and Theoretical Study on the Formation of Interstellar Propylene Oxide (CH ₃ CHCH ₂ O)â€"A Chiral Molecule. Astrophysical Journal, 2018, 860, 108.	1.6	54
45	The Possibility of Forming Propargyl Alcohol in the Interstellar Medium. Molecular Astrophysics, 2017, 6, 36-46.	1.7	15
46	The synthesis of large interstellar molecules. International Reviews in Physical Chemistry, 2017, 36, 287-331.	0.9	78
47	A new model of the chemistry of ionizing radiation in solids: CIRIS. Physical Chemistry Chemical Physics, 2017, 19, 11043-11056.	1.3	26
48	Detection of Interstellar HC ₅ O in TMC-1 with the Green Bank Telescope. Astrophysical Journal Letters, 2017, 843, L28.	3.0	36
49	Gas-grain Fluorine and Chlorine Chemistry in the Interstellar Medium. Astrophysical Journal, 2017, 850, 105.	1.6	26
50	ALMA Detection of Interstellar Methoxymethanol (CH ₃ OCH ₂ OH). Astrophysical Journal Letters, 2017, 851, L46.	3.0	66
51	SIMULATIONS OF THE CHEMISTRY IN THE SMALL MAGELLANIC CLOUD. Astrophysical Journal, 2016, 822, 105.	1.6	11
52	A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7727-7732.	3.3	99
53	CHEMICAL SIMULATIONS OF PREBIOTIC MOLECULES: INTERSTELLAR ETHANIMINE ISOMERS. Astrophysical Journal, 2016, 824, 129.	1.6	27
54	CSO AND CARMA OBSERVATIONS OF L1157. II. CHEMICAL COMPLEXITY IN THE SHOCKED OUTFLOW. Astrophysical Journal, 2016, 827, 21.	1.6	20

#	Article	IF	Citations
55	ON THE INFERENCE OF THE COSMIC-RAY IONIZATION RATE I¶ FROM THE HCO ⁺ -to-DCO ⁺ ABUNDANCE RATIO: THE EFFECT OF NUCLEAR SPIN. Astrophysical Journal, 2016, 830, 151.	1.6	15
56	UNIFIED MICROSCOPIC–MACROSCOPIC MONTE CARLO SIMULATIONS OF COMPLEX ORGANIC MOLECULE CHEMISTRY IN COLD CORES. Astrophysical Journal, 2016, 819, 145.	1.6	34
57	FIRST DETECTION OF GAS-PHASE METHANOL IN A PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 823, L10.	3.0	166
58	Interstellar processes: Ortho/para conversion, radiative association, and dissociative recombination. EPJ Web of Conferences, 2015, 84, 06002.	0.1	10
59	MOLECULAR DEVELOPMENT IN THE LARGE MAGELLANIC CLOUD. Astrophysical Journal, 2015, 812, 142.	1.6	28
60	<i>HERSCHEL</i> OBSERVATIONS OF INTERSTELLAR CHLORONIUM. II. DETECTIONS TOWARD G29.96-0.02, W49N, W51, AND W3(OH), AND DETERMINATIONS OF THE ORTHO-TO-PARA AND AND sup>35 54.	1.6	20
61	Distributions of molecules in the circumnuclear disk and surrounding starburst ring in the Seyfert galaxy NGC 1068 observed with ALMA. Publication of the Astronomical Society of Japan, 2014, 66, .	1.0	43
62	H ₂ FORMATION IN DIFFUSE CLOUDS: A NEW KINETIC MONTE CARLO STUDY. Astrophysical Journal, 2014, 784, 139.	1.6	14
63	THE HNC/HCN RATIO IN STAR-FORMING REGIONS. Astrophysical Journal, 2014, 787, 74.	1.6	83
64	Three milieux for interstellar chemistry: gas, dust, and ice. Physical Chemistry Chemical Physics, 2014, 16, 3344-3359.	1.3	69
65	Concluding remarks: astrochemistry of dust, ice and gas. Faraday Discussions, 2014, 168, 617-634.	1.6	4
66	INTERSTELLAR SIMULATIONS USING A UNIFIED MICROSCOPIC-MACROSCOPIC MONTE CARLO MODEL WITH A FULL GAS-GRAIN NETWORK INCLUDING BULK DIFFUSION IN ICE MANTLES. Astrophysical Journal, 2014, 787, 135.	1.6	47
67	Complex organic molecules in protoplanetary disks. Astronomy and Astrophysics, 2014, 563, A33.	2.1	169
68	Introduction: Astrochemistry. Chemical Reviews, 2013, 113, 8707-8709.	23.0	37
69	REACTIVE DESORPTION AND RADIATIVE ASSOCIATION AS POSSIBLE DRIVERS OF COMPLEX MOLECULE FORMATION IN THE COLD INTERSTELLAR MEDIUM. Astrophysical Journal, 2013, 769, 34.	1.6	220
70	Interstellar Water Chemistry: From Laboratory to Observations. Chemical Reviews, 2013, 113, 9043-9085.	23.0	278
71	A UNIFIED MONTE CARLO TREATMENT OF GAS-GRAIN CHEMISTRY FOR LARGE REACTION NETWORKS. II. A MULTIPHASE GAS-SURFACE-LAYERED BULK MODEL. Astrophysical Journal, 2013, 762, 86.	1.6	113
72	MODELING THE MOLECULAR COMPOSITION IN AN ACTIVE GALACTIC NUCLEUS DISK. Astrophysical Journal, 2013, 765, 108.	1.6	47

#	Article	IF	CITATIONS
73	Deep observations of O ₂ toward a low-mass protostar with <i>Herschel</i> HerschelHIFI. Astronomy and Astrophysics, 2013, 558, A58.	2.1	57
74	A UNIFIED MICROSCOPIC-MACROSCOPIC MONTE CARLO SIMULATION OF GAS-GRAIN CHEMISTRY IN COLD DENSE INTERSTELLAR CLOUDS. Astrophysical Journal, 2012, 759, 147.	1.6	45
75	KINETIC MONTE CARLO STUDIES OF H ₂ FORMATION ON GRAIN SURFACES OVER A WIDE TEMPERATURE RANGE. Astrophysical Journal, 2012, 751, 58.	1.6	32
76	Models of Hot Cores with Complex Molecules. Proceedings of the International Astronomical Union, 2011, 7, 79-87.	0.0	0
77	THE EFFECTS OF GRAIN SIZE AND GRAIN GROWTH ON THE CHEMICAL EVOLUTION OF COLD DENSE CLOUDS. Astrophysical Journal, 2011, 732, 73.	1.6	39
78	CARBON-CHAIN SPECIES IN WARM-UP MODELS. Astrophysical Journal, 2011, 743, 182.	1.6	23
79	CONTRIBUTIONS FROM GRAIN SURFACE AND GAS PHASE CHEMISTRY TO THE FORMATION OF METHYL FORMATE AND ITS STRUCTURAL ISOMERS. Astrophysical Journal, 2011, 728, 71.	1.6	102
80	GAS-GRAIN MODELING OF ISOCYANIC ACID (HNCO), CYANIC ACID (HOCN), FULMINIC ACID (HCNO), AND ISOFULMINIC ACID (HONC) IN ASSORTED INTERSTELLAR ENVIRONMENTS. Astrophysical Journal, 2010, 725, 2101-2109.	1.6	71
81	A NEW NETWORK FOR HIGHER-TEMPERATURE GAS-PHASE CHEMISTRY. I. A PRELIMINARY STUDY OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2010, 721, 1570-1578.	1.6	149
82	Radiative association and the formation of interstellar propylene. Molecular Physics, 2010, 108, 2171-2177.	0.8	18
83	QUANTUM CHEMICAL PREDICTIONS OF THE PROPERTIES OF KNOWN AND POSTULATED NEUTRAL INTERSTELLAR MOLECULES. Astrophysical Journal, Supplement Series, 2009, 185, 273-288.	3.0	153
84	Complex Organic Interstellar Molecules. Annual Review of Astronomy and Astrophysics, 2009, 47, 427-480.	8.1	1,265
85	Chemistry in the ISM: the ALMA (r)evolution. Astrophysics and Space Science, 2008, 313, 129-134.	0.5	7
86	Complex chemistry in star-forming regions. Proceedings of the International Astronomical Union, 2008, 4, 123-124.	0.0	2
87	Polycyclic Aromatic Hydrocarbons in Dense Cloud Chemistry. Astrophysical Journal, 2008, 680, 371-383.	1.6	234
88	The Chemistry of Cold Interstellar Cloud Cores. , 2008, , 1-54.		37
89	Modeling Carbon Chain Anions in L1527. Astrophysical Journal, 2008, 685, 272-280.	1.6	69
90	Complex Chemistry in Starâ€forming Regions: An Expanded Gasâ€Grain Warmâ€up Chemical Model. Astrophysical Journal, 2008, 682, 283-302.	1.6	721

#	Article	IF	CITATIONS
91	Molecular Evolution and Star Formation: From Prestellar Cores to Protostellar Cores. Astrophysical Journal, 2008, 674, 984-996.	1.6	195
92	Modeling the Lukewarm Corino Phase: Is L1527 Unique?. Astrophysical Journal, 2008, 681, 1385-1395.	1.6	90
93	Simulation of the Formation and Morphology of Ice Mantles on Interstellar Grains. Astrophysical Journal, 2007, 668, 294-309.	1.6	224
94	Are gas-phase models of interstellar chemistry tenable? The case of methanol. Faraday Discussions, 2006, 133, 51.	1.6	138
95	The temperature-dependence of rapid low temperature reactions: experiment, understanding and prediction. Faraday Discussions, 2006, 133, 137.	1.6	95
96	Monte Carlo studies of surface chemistry and nonthermal desorption involving interstellar grains. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12257-12262.	3.3	56
97	Monte Carlo simulations of H2 formation on grains of varying surface roughness. Monthly Notices of the Royal Astronomical Society, 2005, 361, 565-576.	1.6	74
98	Chemistry of Star-Forming Regions. Journal of Physical Chemistry A, 2005, 109, 4017-4029.	1.1	95
99	Rapid neutral-neutral reactions at low temperatures: a new network and first results for TMC-1. Monthly Notices of the Royal Astronomical Society, 2004, 350, 323-330.	1.6	240
100	The Gasâ€Phase Formation of Methyl Formate in Hot Molecular Cores. Astrophysical Journal, 2004, 611, 605-614.	1.6	141
101	Isotopic Fractionation by Ion-Molecule Reactions. Space Science Reviews, 2003, 106, 293-304.	3.7	29
102	Enhanced Deuterium Fractionation in Dense Interstellar Cores Resulting from Multiply Deuterated H[FORMULA][F][SUP]+[/SUP][INF]3[/INF][/F][/FORMULA]. Astrophysical Journal, 2003, 591, L41-L44.	1.6	226
103	Observation and analysis of high-Jo1â^'e1 inter-state transitions in CH2DOH. Journal of Chemical Physics, 2002, 116, 3710-3717.	1.2	13
104	New models of interstellar gas-grain chemistry - I. Surface diffusion rates. Monthly Notices of the Royal Astronomical Society, 2002, 319, 837-850.	1.6	108
105	The importance of new rate coefficients for deuterium fractionation reactions in interstellar chemistry. Monthly Notices of the Royal Astronomical Society, 2002, 336, 283-290.	1.6	59
106	Deuterium fractionation on interstellar grains studied with modified rate equations and a Monte Carlo approach. Planetary and Space Science, 2002, 50, 1257-1266.	0.9	78
107	H3++HDâ†"H2D++H2: low-temperature laboratory measurements and interstellar implications. Planetary and Space Science, 2002, 50, 1275-1285.	0.9	167
108	The Millimeter―and Submillimeterâ€₩ave Spectrum of Glycolaldehyde (CH 2 OHCHO). Astrophysical Journal, Supplement Series, 2001, 134, 319-321.	3.0	43

#	Article	IF	CITATIONS
109	New models of interstellar gas-grain chemistry - II. Surface photochemistry in quiescent cores. Monthly Notices of the Royal Astronomical Society, 2001, 322, 770-778.	1.6	63
110	New models of interstellar gas-grain chemistry - III. Solid CO2. Monthly Notices of the Royal Astronomical Society, 2001, 324, 1054-1062.	1.6	79
111	The chemistry of interstellar space. Chemical Society Reviews, 2001, 30, 168-176.	18.7	320
112	The Physics and Chemistry of Small Translucent Molecular Clouds. XIII. The Basic Hydrocarbon Chemistry. Astrophysical Journal, Supplement Series, 2000, 126, 427-460.	3.0	116
113	Chemical Models of Circumstellar Disks. Symposium - International Astronomical Union, 2000, 197, 425-434.	0.1	0
114	Models of Gas-Grain Chemistry in Star-forming Regions. Symposium - International Astronomical Union, 2000, 197, 147-159.	0.1	9
115	The astrochemistry of H 3 +. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 2523-2534.	1.6	78
116	Deuterium Fractionation in Protoplanetary Disks. Astrophysical Journal, 1999, 526, 314-326. A Molecular Orbital Study of the documentclass (aastex) usepackage (amsbsy) usepackage (amsfonts)	1.6	131
117	usepackage{amssymb} usepackage{bm} usepackage{mathrsts} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} ewcommandcyr{ enewcommandmdefault{wncyr} enewcommandfdefault{wncyr} enewcommandfdefault{wncyr} enewcommandfdefault{wncyr} enewcommandfdefault{wncyr}	1.6	55
118	Transitions between Hund's coupling cases for the X ² Î state of NO. Molecular Physics, 1999, 97, 65-79.	0.8	17
119	The Millimeter―and Submillimeterâ€wave Spectrum of Methyl Formate (HCOOCH3). Astrophysical Journal, 1999, 521, 255-260.	1.6	58
120	A Proposed Modification of the Rate Equations for Reactions on Grain Surfaces. Astrophysical Journal, 1998, 495, 309-316.	1.6	125
121	The Ionization Fraction in Dense Cloud Cores. Astrophysical Journal, 1998, 499, 234-249.	1.6	263
122	The Sensitivity of Gasâ€Phase Chemical Models of Interstellar Clouds to C and O Elemental Abundances and to a New Formation Mechanism for Ammonia. Astrophysical Journal, 1998, 501, 207-220.	1.6	85
123	Some Interstellar Reactions Involving Electrons and Neutral Species: Attachment and Isomerization. Astrophysical Journal, 1997, 491, 210-215.	1.6	70
124	The Formation of Large Hydrocarbons and Carbon Clusters in Dense Interstellar Clouds. Astrophysical Journal, 1997, 478, 585-593.	1.6	74
125	Conference Summary: Molecules in astrophysics. Symposium - International Astronomical Union, 1997, 178, 1-12.	0.1	0
126	Classical studies of shock waveâ€induced desorption for model adsorbates. Journal of Chemical Physics, 1996, 105, 10868-10873.	1.2	4

#	Article	IF	Citations
127	Effect of coupling between frustrated translation and libration on the nonthermal desorption of physisorbed CO: Threeâ€dimensional quantum calculations. Journal of Chemical Physics, 1996, 104, 6330-6337.	1.2	5
128	Calculations of the low temperature pressure broadening of HCO+ rotational spectral lines by H2. Journal of Chemical Physics, 1996, 104, 3956-3961.	1.2	9
129	On the Stability of Interstellar Carbon Clusters: The Rate of the Reaction between C 3 and O. Astrophysical Journal, 1996, 465, 795.	1.6	37
130	Chemistry in the Interstellar Medium. Annual Review of Physical Chemistry, 1995, 46, 27-54.	4.8	368
131	The Millimeter- and Submillimeter-Wave Spectrum of <i>trans</i> -Ethyl Alcohol. Journal of Physical and Chemical Reference Data, 1995, 24, 1-32.	1.9	59
132	Classical dynamics of adsorbate–surface systems: Application to nonthermal desorption. Journal of Chemical Physics, 1994, 100, 9205-9214.	1.2	16
133	The effect of varying cosmic-ray ionization rates on dark cloud chemistry. Monthly Notices of the Royal Astronomical Society, 1994, 269, 641-648.	1.6	28
134	Calculations on the competition between association and reaction for C3H++H2. Journal of Chemical Physics, 1993, 99, 2812-2820.	1.2	38
135	New gas–grain chemical models of quiescent dense interstellar clouds: the effects of H2 tunnelling reactions and cosmic ray induced desorption. Monthly Notices of the Royal Astronomical Society, 1993, 261, 83-102.	1.6	448
136	Chemical differentiation between star-forming regions - The Orion Hot Core and Compact Ridge. Astrophysical Journal, 1993, 408, 548.	1.6	230
137	Calculations Concerning Interstellar Isomeric Abundance Ratios for C 3H and C 3H 2. Astrophysical Journal, 1993, 417, 181.	1.6	30
138	Calculations on the rate of the ion–molecule reaction C2H+2+H2→C2H+3+H. Journal of Chemical Physics, 1992, 96, 5801-5807.	1.2	14
139	Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. Astrophysical Journal, Supplement Series, 1992, 82, 167.	3.0	633
140	Chemical modelling of dark clouds in the LMC and SMC. Monthly Notices of the Royal Astronomical Society, 1990, 242, 92-97.	1.6	26
141	Deuterium fractionation in dense interstellar clouds. Astrophysical Journal, 1989, 340, 906.	1.6	360
142	Identification of interstellar methanol lines. Astrophysical Journal, 1988, 333, 359.	1.6	15
143	Effects of large rate coefficients for ion-polar neutral reactions on chemical models of dense interstellar clouds. Astrophysical Journal, 1986, 310, 378.	1.6	79
144	The Formation and Depletion of Molecules in Dense Interstellar Clouds. Astrophysical Journal, 1973, 185, 505.	1.6	924