Dariusz Maciej Pisklak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4621199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	1H, 13C, 15N NMR analysis of sildenafil base and citrate (Viagra) in solution, solid state and pharmaceutical dosage forms. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 865-870.	1.4	75
2	Selenized polysaccharides – Biosynthesis and structural analysis. Carbohydrate Polymers, 2018, 198, 407-417.	5.1	54
3	Pharmaceutical Hydrates Analysis—Overview of Methods and Recent Advances. Pharmaceutics, 2020, 12, 959.	2.0	45
4	Periodic DFT Calculations—Review of Applications in the Pharmaceutical Sciences. Pharmaceutics, 2020, 12, 415.	2.0	39
5	13C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment. Journal of Pharmaceutical and Biomedical Analysis, 2016, 122, 81-89.	1.4	27
6	Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids. Journal of Pharmaceutical and Biomedical Analysis, 2014, 100, 322-328.	1.4	25
7	Solid state structure of coumarin anticoagulants: warfarin and sintrom. 13C CPMAS NMR and GIAO DFT calculations. Journal of Molecular Structure, 2003, 649, 169-176.	1.8	23
8	Application of 13C CPMAS NMR for Qualitative and Quantitative Characterization of Carvedilol and its Commercial Formulations. Journal of Pharmaceutical Sciences, 2012, 101, 1763-1772.	1.6	20
9	13C, 15N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa). Solid State Nuclear Magnetic Resonance, 2008, 34, 202-209.	1.5	19
10	Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations. Chemical Physics Letters, 2016, 653, 35-41.	1.2	19
11	Can we predict the structure and stability of molecular crystals under increased pressure? Firstâ€principles study of glycine phase transitions. Journal of Computational Chemistry, 2018, 39, 1300-1306.	1.5	19
12	Solid-State NMR as an Effective Method of Polymorphic Analysis: Solid Dosage Forms of Clopidogrel Hydrogensulfate. Journal of Pharmaceutical Sciences, 2015, 104, 106-113.	1.6	17
13	A Review on Combination of Ab Initio Molecular Dynamics and NMR Parameters Calculations. International Journal of Molecular Sciences, 2021, 22, 4378.	1.8	17
14	Crystal Structures of Tiotropium Bromide and Its Monohydrate in View of Combined Solid-state Nuclear Magnetic Resonance and Gauge-Including Projector-Augmented Wave Studies. Journal of Pharmaceutical Sciences, 2015, 104, 2285-2292.	1.6	15
15	In VitroDissolution of Calcium Carbonate from the Chicken Eggshell: A Study of Calcium Bioavailability. International Journal of Food Properties, 2015, 18, 2791-2799.	1.3	15
16	Does the choice of the crystal structure influence the results of the periodic DFT calculations? A case of glycine alpha polymorph GIPAW NMR parameters computations. Journal of Computational Chemistry, 2018, 39, 853-861.	1.5	14
17	Matrix effect screening for cloud-point extraction combined with liquid chromatography coupled to mass spectrometry: Bioanalysis of pharmaceuticals. Journal of Chromatography A, 2019, 1591, 44-54.	1.8	14
18	Spectroscopic and structural studies of the diosmin monohydrate and anhydrous diosmin. International Journal of Pharmaceutics, 2017, 529, 193-199.	2.6	13

#	Article	IF	CITATIONS
19	Can We Predict the Pressure Induced Phase Transition of Urea? Application of Quantum Molecular Dynamics. Molecules, 2020, 25, 1584.	1.7	13
20	13C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations Part II: CP kinetics and relaxation analysis. Journal of Pharmaceutical and Biomedical Analysis, 2016, 122, 29-34.	1.4	12
21	1H and 13C NMR characteristics of Î ² -blockers. Magnetic Resonance in Chemistry, 2011, 49, 284-290.	1.1	11
22	13C cross-polarization magic-angle spinning nuclear magnetic resonance analysis of the solid drug forms with low concentration of an active ingredient-propranolol case. Journal of Pharmaceutical and Biomedical Analysis, 2014, 93, 68-72.	1.4	11
23	Application of combined solid-state NMR and DFT calculations for the study of piracetam polymorphism. Solid State Nuclear Magnetic Resonance, 2019, 97, 17-24.	1.5	9
24	¹ H and ¹³ C Magic-Angle Spinning Nuclear Magnetic Resonance Studies of the Chicken Eggshell. Journal of Agricultural and Food Chemistry, 2012, 60, 12254-12259.	2.4	8
25	1H, 13C NMR studies and GIAO/DFT calculations of substituted N-(4-aryl-1-piperazinylbutyl) derivatives, new analogues of buspirone. Journal of Molecular Structure, 2004, 698, 93-102.	1.8	7
26	Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens. International Journal of Molecular Sciences, 2020, 21, 6411.	1.8	6
27	Application of 13C NMR cross-polarization inversion recovery experiments for the analysis of solid dosage forms. International Journal of Pharmaceutics, 2016, 513, 538-542.	2.6	5
28	The potential for the indirect crystal structure verification of methyl glycosides based on acetates' parent structures: GIPAW and solid-state NMR approaches. Chemical Physics Letters, 2017, 686, 7-11.	1.2	5
29	Analysis of Water in the Chicken Eggshell Using the 1H Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Brazilian Journal of Poultry Science, 2016, 18, 27-32.	0.3	5
30	Structural studies of 4-aryloctahydro-pyrido[1,2-c]pyrimidine derivatives. Journal of Molecular Structure, 2002, 605, 85-92.	1.8	4
31	2-Methylthio-imidazolins: a rare case of different tautomeric forms in solid state and in solution. Structural Chemistry, 2017, 28, 757-772.	1.0	4
32	A new polymorph of 17-l²-estradiol and the application of different analytical techniques (ssNMR, PXRD,) Tj ETQ	9000 rgE 1.8	BT /Qverlock 1
33	Can We Predict the Isosymmetric Phase Transition? Application of DFT Calculations to Study the Pressure Induced Transformation of Chlorothiazide. International Journal of Molecular Sciences, 2021, 22, 10100.	1.8	4
34	1H, 13C and 31P MAS NMR studies of lyophilized brain tumors. Solid State Nuclear Magnetic Resonance, 2010, 37, 21-27.	1.5	3
35	Solid-state structure of methyl 2,4,6-tri-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-β-d-galactopyranoside and methyl 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-β-d-galactopyranoside. Journal of Molecular Structure. 2013. 1037. 49-56.	1.8	3
36	Reliable evaluation of molecular structure of methyl 3-O-nitro-α-d-glucopyranoside and its intermediates by means of solid-state NMR spectroscopy and DFT optimization in the absence of	1.0	3

3

#	Article	IF	CITATIONS
37	Comment on "Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients: potential relevance to combination drugs―by S. Aitipamula, P. S. Chow and R. B. H. Tan, <i>CrystEngComm</i> , 2009, 11 , 1823. CrystEngComm, 2018, 20, 370-372.	1.3	3
38	Comparison of the analytical methods (solid state NMR, FT-IR, PXRD) in the analysis of the solid drug forms with low concentration of an active ingredient – 17-β-estradiol case. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 160-165.	1.4	3
39	In Vitro and In Silico Kinetic Studies of Patented 1,7-diEthyl and 1,7-diMethyl Aminoalkanol Derivatives as New Inhibitors of Acetylcholinesterase. International Journal of Molecular Sciences, 2022, 23, 270.	1.8	3
40	Structural studies of pyrido[1,2-c]pyrimidine derivatives by 13C CPMAS NMR, X-ray diffraction and GIAO/DFT calculations. Journal of Molecular Structure, 2008, 892, 325-330.	1.8	2
41	Single-crystal and powder X-ray diffraction, 13C CP/MAS NMR, and DFT-GIAO calculations of methyl 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyranoside and methyl 2,4,6-tri-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyranoside. Journal of Molecular Structure. 2013. 1036. 407-413.	1.8	2
42	Crystal and molecular structure of nitrophenyl 2,3,4-tri-O-acetyl-β-d-xylopyranosides. Journal of Molecular Structure, 2012, 1007, 227-234.	1.8	1
43	Solid-state structures of 2-(4-hydroxyphenyl)-substituted phenalene-1,3-dione and indan-1,3-dione. Journal of Structural Chemistry, 2014, 55, 446-455.	0.3	1
44	How does the NMR thermometer work? Application of combined quantum molecular dynamics and GIPAW calculations into the study of lead nitrate. Journal of Computational Chemistry, 2019, 40, 811-819.	1.5	1
45	Structural studies of calcium channel blockers used in the treatment of hypertension ― ¹ H and ¹³ C NMR characteristics of nifedipine analogues. Magnetic Resonance in Chemistry, 2019, 57, 149-160.	1.1	0
46	Combination of solid-state NMR, molecular mechanics and DFT calculations for the molecular structure determination of methyl glycoside benzoates. Structural Chemistry, 2021, 32, 297-307.	1.0	0